【題目】如圖,已知△ABC中,ABBC,DAC中點(diǎn),過點(diǎn)DDEBC,交AB于點(diǎn)E

1)求證:AEDE;

2)若∠C65°,求∠BDE的度數(shù).

【答案】1)證明見解析;(225°.

【解析】

1)由等腰三角形的性質(zhì)可得∠C=∠A,由平行線的性質(zhì)可得∠C=∠ADE,從而∠A=∠ADE;

2)先由三角形內(nèi)角和求出∠ABC50°,再由三線合一的性質(zhì)可求出∠EBD=∠DBC=ABC25°,然后根據(jù)平行線的性質(zhì)求解即可.

證明:(1)∵DEBC,

∴∠C=∠ADE

ABBC,

∴∠C=∠A

∴∠A=∠ADE,

AEDE;

2)∵△ABC中,ABBC,∠C65°,

∴∠ABC180°﹣65°﹣65°=50°,

ABBC,DAC中點(diǎn),

∴∠EBD=∠DBC=ABC25°,

DEBC,

∴∠BDE=∠DBC25°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB、CD在同一直線上,ABCD,DEAF,若要使△ACF≌△DBE,則還需要補(bǔ)充一個(gè)條件:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D是∠ACB與∠ABC的角平分線的交點(diǎn),BD的延長(zhǎng)線交AC于點(diǎn)E.

1)若∠A=80°,求∠BDC的度數(shù);

2)若∠EDC=40°,求∠A的度數(shù);

3)請(qǐng)直接寫出∠A與∠BDC之間的數(shù)量關(guān)系(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別是可活動(dòng)的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長(zhǎng)相等.

1)在一次數(shù)學(xué)活動(dòng)中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點(diǎn)C,連接DEAF于點(diǎn)M,觀察發(fā)現(xiàn):點(diǎn)MDE的中點(diǎn).

下面是兩位學(xué)生有代表性的證明思路:

思路1:不需作輔助線,直接證三角形全等;

思路2:不證三角形全等,連接BDAF于點(diǎn)H.…

請(qǐng)參考上面的思路,證明點(diǎn)MDE的中點(diǎn)(只需用一種方法證明);

2)如圖2,在(1)的前提下,當(dāng)∠ABE=135°時(shí),延長(zhǎng)ADEF交于點(diǎn)N,求的值;

3)在(2)的條件下,若=kk為大于的常數(shù)),直接用含k的代數(shù)式表示的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高2米的影子CE;而當(dāng)光線與地面夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C13米的距離(B、F、C在一條直線上)

(1)求教學(xué)樓AB的高度;

(2)學(xué)校要在A、E之間掛一些彩旗,請(qǐng)你求出A、E之間的距離(結(jié)果保留整數(shù)).

(參考數(shù)據(jù):sin22°cos22°,tan22°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在長(zhǎng)方形ABCD中,將ABE沿著AE折疊至AEF的位置,點(diǎn)F在對(duì)角線AC上,若BE=3,EC=5,則線段CD的長(zhǎng)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個(gè)四邊形紙片ABCD,∠B=D=,把紙片按如圖所示折疊,使點(diǎn)B落在AD邊上的B′點(diǎn),AE是折痕.

1)試判斷B′EDC的位置關(guān)系;并說明理由.

2)如果∠C=,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD,D=100°,AC平分BCD,ACB=40°,BAC=70°.

(1)ADBC平行嗎?試寫出推理過程;

(2)DACEAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】巴蜀中學(xué)2017春季運(yùn)動(dòng)會(huì)的開幕式精彩紛呈,主要分為以下幾個(gè)類型A文藝范、B動(dòng)漫潮、C學(xué)院派、D民族風(fēng),為了解未能參加運(yùn)動(dòng)會(huì)的初三學(xué)子對(duì)開幕式類型的喜好情況學(xué)生處在初三年級(jí)隨機(jī)抽取了一部分學(xué)生進(jìn)行調(diào)查,并將他們喜歡的種類繪制成如下統(tǒng)計(jì)圖請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答以下問題

1)請(qǐng)補(bǔ)全折線統(tǒng)計(jì)圖,并求出動(dòng)漫潮所在扇形的圓心角度數(shù)

2)據(jù)統(tǒng)計(jì),在被調(diào)查的學(xué)生中喜歡文藝范類型的僅有2名住讀生,其余均為走讀生,初二年級(jí)欲從喜歡文藝范的這幾名同學(xué)中隨機(jī)抽取兩名同學(xué)去觀摩文明禮儀大賽視頻,用列表法或樹狀圖的方法求出所選的兩名同學(xué)都是走讀生的概率

查看答案和解析>>

同步練習(xí)冊(cè)答案