【題目】我校要對(duì)如圖所示的一塊地進(jìn)行綠化,已知AD8米,CD6米,ADCD,AB26米,BC24米,求這塊地的面積.

【答案】這塊地的面積是96平方米.

【解析】

先連接AC,在RtACD中,利用勾股定理可求AC,進(jìn)而求出AC2+BC2AB2,利用勾股定理逆定理可證△ABC是直角三角形,再利用S四邊形ABCDSABCSACD,即可求地的面積.

解:如右圖所示,連接AC,

∵∠D90°,

AC2AD2+CD2

AC10,

又∵AC2+BC2676AB2262676,

AC2+BC2AB2

∴△ABC是直角三角形,

S四邊形ABCDSABCSACD24×106×8)=96

答:這塊地的面積是96平方米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化工材料經(jīng)銷(xiāo)公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克30元。物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不高于每千克60元,不低于每千克30元。經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷(xiāo)售量y(千克)是銷(xiāo)售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100。在銷(xiāo)售過(guò)程中,每天還要支付其他費(fèi)用450元。

(1)求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍。

(2)求該公司銷(xiāo)售該原料日獲利w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式。

(3)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校新到一批理、化、生實(shí)驗(yàn)器材需要整理,若實(shí)驗(yàn)管理員張老師一人單獨(dú)整理需要1小時(shí)完成.現(xiàn)在張老師與工人黃師傅共同整理30分鐘后,張老師因事外出,黃師傅再單獨(dú)整理了30分鐘才完成任務(wù).

1)黃師傅單獨(dú)整理這批實(shí)驗(yàn)器材需要多少分鐘完成;

2)學(xué)校要求在完成整理這批器材時(shí)黃師傅的工作時(shí)間不能超過(guò)30分鐘,則張老師至少要工作多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中, ADBC于點(diǎn)D,點(diǎn)EAD上一點(diǎn),且ABCE,EDBD

1)求證:ADC是等腰三角形;

2)若∠ACE=25°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)EF分別在邊,AD,CD上,且,BDEF交于點(diǎn)O,延長(zhǎng)BD至點(diǎn)H,使得,并連接HE,HF

求證:;

試判斷四邊形BEHF是什么特殊的四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 中,∠ABC 和∠ACB 的平分線(xiàn)交于點(diǎn) O,EF 過(guò)點(diǎn) O EFBC,如果 AB=6,AC=5,求AEF 的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店購(gòu)進(jìn)、兩種商品,購(gòu)買(mǎi)1個(gè)商品比購(gòu)買(mǎi)1個(gè)商品多花10元,并且花費(fèi)300元購(gòu)買(mǎi)商品和花費(fèi)100元購(gòu)買(mǎi)商品的數(shù)量相等.

1)求購(gòu)買(mǎi)一個(gè)商品和一個(gè)商品各需要多少元;

2)商店準(zhǔn)備購(gòu)買(mǎi)、兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購(gòu)買(mǎi)商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購(gòu)買(mǎi)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,解答下面的問(wèn)題:

我們知道方程有無(wú)數(shù)個(gè)解,但在實(shí)際問(wèn)題中往往只需求出其正整數(shù)解.

例:由,得:( 、為正整數(shù)).要使為正整數(shù),則為正整數(shù),可知: 為3的倍數(shù),從而,代入.所以的正整數(shù)解為

問(wèn)題:

(1)請(qǐng)你直接寫(xiě)出方程=8的正整數(shù)解

(2)若為自然數(shù),則滿(mǎn)足條件的正整數(shù)的值有( )

A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)

(3)關(guān)于, 的二元一次方程組的解是正整數(shù),求整數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1,網(wǎng)格中有一個(gè)格點(diǎn)ABC(即三角形的頂點(diǎn)都在格點(diǎn)上).

1ABC的面積為__________;

2)在圖中作出ABC關(guān)于直線(xiàn)MN的對(duì)稱(chēng)圖形A′B′C′.

3)利用網(wǎng)格紙,在MN上找一點(diǎn)P,使得PB+PC的距離最短.( 保留痕跡)

查看答案和解析>>

同步練習(xí)冊(cè)答案