【題目】如圖, OAB與ODC是位似圖形 。
試問:(1)AB與CD平行嗎?請說明理由 。
(2)如果OB=3,OC=4,OD=3.5.試求OAB與ODC的相似比及OA的長 。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求下列各式中的x的值:
(1)8x3+125=0;
(2)(x-3)2-9=0.
【答案】(1)x=-;(2)x1=6或x2=0.
【解析】試題分析:(1)立方根定義解方程.(2)平方根定義解方程.
試題解析:(1)8x3+125=0,
x3=,
x=-.
(2)(x-3)2-9=0,
(x-3)2=9,
x-3=,
x1=6或x2=0.
【題型】解答題
【結(jié)束】
19
【題目】(1)已知某數(shù)的平方根是和, 的立方根是,求的平方根.
(2)已知y=+-8,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補(bǔ)全下列各題解題過程.
如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數(shù).
解:∵EF∥AD ( 已知 )
∴∠2 = ( )
又∵∠1=∠2 ( )
∴∠1=∠3 ( )
∴AB∥ ( )
∴∠BAC + = 180°( )
∵∠BAC = 70°(已知 )
∴∠AGD = _ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BC,∠1=∠2,要說明∠3+∠4=180°,請補(bǔ)充完整解題過程,并在括號內(nèi)填上相應(yīng)的依據(jù):
解:因?yàn)?/span>AD∥BC(已知),
所以∠1=∠3( ).
因?yàn)椤?/span>1=∠2(已知),
所以∠2=∠3.
所以BE∥________( ).
所以∠3+∠4=180°( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根據(jù)這個規(guī)律,第2 025個點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,CE平分∠ACD交AB于E點(diǎn).
(1)求證:△ACE是等腰三角形;
(2)若AC=13cm,CE=24cm,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)若該方程的一個根為2,求a的值及該方程的另一根.
(2)求證:不論a取何實(shí)數(shù),該方程都有兩個不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈書包活動.首次用2000元在商店購進(jìn)一批學(xué)生書包,活動進(jìn)行后發(fā)現(xiàn)書包數(shù)量不夠,又購進(jìn)第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.
(1)求文化官第一批購進(jìn)書包的單價是多少?
(2)商店兩批書包每個的進(jìn)價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com