下列函數(shù)中,其圖象同時(shí)滿(mǎn)足兩個(gè)條件①у隨著χ的增大而增大?;②與?軸的正半軸
相交,則它的解析式為(  )
A.у=-2χ-1B.у="-2χ+1"C.у=2χ-1D.у=2χ+1
D
分析:由①y隨著x的增大而增大,可知k>0;②y與x軸的正半軸相交,可知b>0;根據(jù)這兩個(gè)條件即可判斷.
解:由題可知:解析式中必須滿(mǎn)兩個(gè)條件①y隨著x的增大而增大②與y軸的正半軸相交.
D中當(dāng)k>0,b>0,y的值隨x的值增大而增大,且與y的正半軸相交,符合條件.
故選D.
點(diǎn)評(píng):一次函數(shù)y=kx+b的圖象有四種情況:
①當(dāng)k>0,b>0,函數(shù)y=kx+b的圖象經(jīng)過(guò)第一、二、三象限,y的值隨x的值增大而增大;
②當(dāng)k>0,b<0,函數(shù)y=kx+b的圖象經(jīng)過(guò)第一、三、四象限,y的值隨x的值增大而增大;
③當(dāng)k<0,b>0時(shí),函數(shù)y=kx+b的圖象經(jīng)過(guò)第一、二、四象限,y的值隨x的值增大而減;
④當(dāng)k<0,b<0時(shí),函數(shù)y=kx+b的圖象經(jīng)過(guò)第二、三、四象限,y的值隨x的值增大而減小.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD的邊ABx軸上,AB的中點(diǎn)與原點(diǎn)O重合,AB=2,AD=1,點(diǎn)Q的坐標(biāo)為(0,2).

小題1:(1)求直線QC的解析式;
小題2:(2)點(diǎn)P(a,0)在邊AB上運(yùn)動(dòng),若過(guò)點(diǎn)PQ的直線將矩形ABCD的周長(zhǎng)分成3∶1兩部分,求出此時(shí)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

)如圖,直線,點(diǎn)坐標(biāo)為(1,0),過(guò)點(diǎn)軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心, 長(zhǎng)為半徑畫(huà)弧交軸于點(diǎn);再過(guò)點(diǎn)軸的垂線交直線于點(diǎn),以原點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧交軸于點(diǎn),…,按此做法進(jìn)行下去,點(diǎn)A1011的坐標(biāo)為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知y-2與x成正比,且當(dāng)x=1時(shí),y=-6,則y與x之間的函數(shù)關(guān)系式           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)y=3x+m與函數(shù)y=-3x+n交于點(diǎn)(a,16),則mn=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一次函數(shù)y=kx+b中,y隨x的增大而減小,且kb>0,則這個(gè)函數(shù)的圖象一定不經(jīng)過(guò)第______象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
小題1:(1)請(qǐng)?jiān)谕蛔鴺?biāo)系中畫(huà)出這兩個(gè)函數(shù)的圖像。
小題2:(2)求出這兩個(gè)函數(shù)圖像的交點(diǎn)坐標(biāo)。
小題3:觀察圖像,回答當(dāng)x取何值時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是正比例函數(shù),則b的值是 (   )
A. 0B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知直線l1經(jīng)過(guò)點(diǎn)A(-2,0)和點(diǎn)B(0,),直線l2的函數(shù)表達(dá)式為,l1與l2相交于點(diǎn)P.⊙C是一個(gè)動(dòng)圓,圓心C在直線l1上運(yùn)動(dòng),設(shè)圓心C的橫坐標(biāo)是a.過(guò)點(diǎn)C作CM⊥x軸,垂足是點(diǎn)M.
小題1:求直線l1的函數(shù)表達(dá)式;
小題2: 當(dāng)⊙C和直線l2相切時(shí),請(qǐng)證明點(diǎn)P到直線CM的距離等于⊙C的半徑R,并寫(xiě)出R=時(shí)a的值.
小題3:當(dāng)⊙C和直線l2不相離時(shí),已知⊙C的半徑R=,記四邊形NMOB的面積為S(其中點(diǎn)N是直線CM與l2的交點(diǎn)).S是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案