【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是ABC的邊AC上任意一點(diǎn),ABC經(jīng)過(guò)平移后得到A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+6,b﹣2).

(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:.A1( ),B1( ),C1( ).

(2)在上圖中畫(huà)出平移后三角形A1B1C1

(3)畫(huà)出AOA1并求出AOA1的面積.

【答案】(1)A1 (3,1)B1 (1,-1)C1(4,﹣2);(2)見(jiàn)解析;(3)6.

【解析】分析:1)根據(jù)點(diǎn)P、P1的坐標(biāo)確定出平移規(guī)律,再求出A1B1、C1的坐標(biāo)即可

2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對(duì)應(yīng)點(diǎn)A1、B1C1的位置,然后順次連接即可

3)利用△AOA1所在的矩形的面積減去四周三個(gè)小直角三角形的面積,列式計(jì)算即可得解.

詳解:(1∵點(diǎn)Pa,b)的對(duì)應(yīng)點(diǎn)為P1a+6b2),∴平移規(guī)律為向右6個(gè)單位,向下2個(gè)單位,A(﹣33),B(﹣51),C(﹣20)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為A13,1),B11,﹣1),C14,﹣2);

2A1B1C1如圖所示

3AOA1的面積=6×3×3×3×3×1×6×2=186=1812=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(x21,﹣2)所在的象限是( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,BD是對(duì)角線,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,試判斷四邊形AECF是不是平行四邊形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解題:

定義:如果一個(gè)數(shù)的平方等于-1,記為,這個(gè)數(shù)叫做虛數(shù)單位。那么和我們所學(xué)的實(shí)數(shù)對(duì)應(yīng)起來(lái)就叫做復(fù)數(shù),表示為 為實(shí)數(shù)),叫這個(gè)復(fù)數(shù)的實(shí)部, 叫做這個(gè)復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似。

例如計(jì)算:

1)填空: =_________, =____________;

2)計(jì)算:

3計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)把下面證明過(guò)程補(bǔ)充完整:

已知:如圖,∠ADC=∠ABC,BEDF分別平分∠ABC、ADC,且∠1=∠2

求證:∠A=∠C

證明:∵BE、DF分別平分∠ABC、ADC(已知),

∴∠1=ABC,3=ADC(角平分線定義)

∵∠ABC=∠ADC(已知),

∴∠1=∠3(等量代換),

∵∠1=∠2(已知)

∴∠2=∠3(等量代換)

∴_____∥_____ (___ __)

∴∠A+∠_____=180°,C+∠_____=180°(___ __)

∴∠A=∠C(___ __)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元/件.試營(yíng)銷(xiāo)階段發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)是25元時(shí),每天的銷(xiāo)售量為250件;銷(xiāo)售單價(jià)每上漲1元,每天的銷(xiāo)售量就減少10件.
(1)寫(xiě)出商場(chǎng)銷(xiāo)售這種文具,每天所得的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求銷(xiāo)售單價(jià)為多少元時(shí),該文具每天的銷(xiāo)售利潤(rùn)最大;
(3)商場(chǎng)的營(yíng)銷(xiāo)部結(jié)合上述情況,提出了A、B兩種營(yíng)銷(xiāo)方案: 方案A:該文具的銷(xiāo)售單價(jià)高于進(jìn)價(jià)且不超過(guò)30元;
方案B:每天銷(xiāo)售量不少于10件,且每件文具的利潤(rùn)至少為25元
請(qǐng)比較哪種方案的最大利潤(rùn)更高,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:如圖1,ABCD,PAB=130°,PCD=120°.求APC度數(shù).

小明的解題思路是:如圖2,過(guò)P作PEAB,通過(guò)平行線性質(zhì),可得APC=50°+60°=110°.

問(wèn)題遷移:

(1)如圖3,ADBC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),ADP=α,BCP=β.試判斷CPD、α、β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出CPD、α、β間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx的圖像如圖,若一元二次方程ax2+bx+m=0有實(shí)數(shù)根,則m的最大值為(
A.﹣3
B.3
C.﹣6
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的角平分線,DEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EFAD于點(diǎn)G

1)求證:AD垂直平分EF;

2)若BAC=60°,猜測(cè)DGAG間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案