拋物線與x軸交點(diǎn)為A、B,與y軸交點(diǎn)為C,頂點(diǎn)為M,(1)求經(jīng)過M,C的直線與x軸的交點(diǎn)N的坐標(biāo);(2)tan∠MNB的值.

答案:
解析:

y=x3,N(3,0),tanMNB=1


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=
12
(x+1)2-2
,
(1)設(shè)此拋物線與x軸交點(diǎn)為A、B(A在B的左邊),請(qǐng)你求出A、B兩點(diǎn)的坐標(biāo);
(2)有一條直線y=x-1,試?yán)脠D象法求出該直線與拋物線的交點(diǎn)坐標(biāo);
(3)P是拋物線上的一個(gè)動(dòng)點(diǎn),問是否存在一點(diǎn)P,使S△ABP=4,若存在,則有幾個(gè)這樣的點(diǎn)P,并寫出它們的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+bx+c經(jīng)過點(diǎn)P(2,-3),Q(-1,0).
(1)求拋物線的解析式.
(2)設(shè)拋物線與y軸交點(diǎn)為A.求S△APQ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=(k2-2)x2-4kx+m的對(duì)稱軸是直線x=2,且它的最低點(diǎn)在直線y=-2x+2上,求:
(1)函數(shù)解析式;
(2)若拋物線與x軸交點(diǎn)為A、B與y軸交點(diǎn)為C,求△ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)B(1,3),C(1,0),直線y=x+k經(jīng)過點(diǎn)B,且與x軸交于點(diǎn)A,將△ABC沿直線AB折疊得到△ABD.
(1)填空:A點(diǎn)坐標(biāo)為(
 
,
 
),D點(diǎn)坐標(biāo)為(
 
,
 
);
(2)若拋物線y=
1
3
x2+bx+c經(jīng)過C,D兩點(diǎn),求拋物線的解析式;
(3)將(2)中的拋物線沿y軸向上平移,設(shè)平移后所得拋物線與y軸交點(diǎn)為E,點(diǎn)M是平移后的拋物線與直線AB的公共點(diǎn),在拋物線平移過程中是否存在某一位置使得直線EM∥x軸.若存在,此時(shí)拋物線向上平移了幾個(gè)單位?若不存在,請(qǐng)說明理由.
(提示:拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸是x=-
b
2a
,頂點(diǎn)坐標(biāo)是(-
b
2a
,
4ac-b2
4a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點(diǎn),拋物線與y軸交點(diǎn)為C,其頂點(diǎn)為D,連接BD,點(diǎn)P是線段BD上一個(gè)動(dòng)點(diǎn)(不與B、D重合),過點(diǎn)P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
(1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當(dāng)s取得最大值時(shí),過點(diǎn)P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P',請(qǐng)直接寫出P'點(diǎn)坐標(biāo),并判斷點(diǎn)P'是否在該拋物線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案