【題目】某市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費(fèi)用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價(jià)z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷售完,達(dá)到產(chǎn)銷平衡,所獲毛利潤為w萬元.(毛利潤=銷售額﹣生產(chǎn)費(fèi)用)
(1)請直接寫出y與x以及z與x之間的函數(shù)關(guān)系式;
(2)求w與x之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬件時(shí),所獲毛利潤最大?最大毛利潤是多少?
(3)由于受資金的影響,今年投入生產(chǎn)的費(fèi)用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?
【答案】(1)y=x2,z=﹣x+30;(2)W==﹣x2+30x,年產(chǎn)量為75萬件時(shí)毛利潤最大,最大毛利潤為1125萬元;(3)今年最多可獲得1080萬元的毛利潤.
【解析】
(1)結(jié)合圖象,利用待定系數(shù)法求出y與x以及z與x之間的函數(shù)關(guān)系式即可;(2)根據(jù)毛利潤=銷售額﹣生產(chǎn)費(fèi)用可得w與x之間的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)求解即可;(3)令y=0,解方程求得x的值,根據(jù)圖象結(jié)合y的取值范圍,求得x的取值范圍,再由二次函數(shù)的性質(zhì)即可解答.
(1)圖①可得函數(shù)經(jīng)過點(diǎn)(100,1000),
設(shè)拋物線的解析式為y=ax2(a≠0),
將點(diǎn)(100,1000)代入得:1000=10000a,
解得:a=,
故y與x之間的關(guān)系式為y=x2.
圖②可得:函數(shù)經(jīng)過點(diǎn)(0,30)、(100,20),
設(shè)z=kx+b,則,
解得:,
故z與x之間的關(guān)系式為z=﹣x+30;
(2)W=zx﹣y=﹣x2+30x﹣x2
=﹣x2+30x
=﹣(x2﹣150x)
=﹣(x﹣75)2+1125,
∵﹣<0,
∴當(dāng)x=75時(shí),W有最大值1125,
∴年產(chǎn)量為75萬件時(shí)毛利潤最大,最大毛利潤為1125萬元;
(3)令y=360,得x2=360,
解得:x=±60(負(fù)值舍去),
由圖象可知,當(dāng)0<y≤360時(shí),0<x≤60,
由W=﹣(x﹣75)2+1125的性質(zhì)可知,
當(dāng)0<x≤60時(shí),W隨x的增大而增大,
故當(dāng)x=60時(shí),W有最大值1080,
答:今年最多可獲得毛利潤1080萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD平分∠ACB,∠1=∠2.
(1)求證:DE∥AC;
(2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個質(zhì)點(diǎn)在第一象限及x軸、y軸上運(yùn)動,且每秒移動一個單位,在第1秒鐘,它從原點(diǎn)運(yùn)動到(0,1),然后接著按圖中箭頭所示方向運(yùn)動,即(0,0)→(0,1)→(1,1)→(1,0)→…,若經(jīng)過23秒質(zhì)點(diǎn)到達(dá)點(diǎn)A,經(jīng)過33秒質(zhì)點(diǎn)到達(dá)點(diǎn)B,則直線AB的解析式為( )
A.y=x+B.y=﹣x+C.y=2x+9D.y=﹣2x+9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,BE和DF相交于點(diǎn)E.
(1)若∠B=110°,∠D=145°,求∠BEF的度數(shù);
(2)猜想∠B,∠D,∠BEF之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對12﹣35歲的網(wǎng)癮人群進(jìn)行了簡單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.
請根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調(diào)查中共調(diào)查了 人;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是 ;
(4)據(jù)報(bào)道,目前我國12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請估計(jì)其中12﹣23歲的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點(diǎn)的坐標(biāo);
(3)觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某條直線對稱?若是,請?jiān)趫D上畫出這條對稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.現(xiàn)以這組數(shù)中的各個數(shù)作為正方形的邊長值構(gòu)造正方形,再分別依次從左到右取2個、3個、4個、5個…正方形拼成如上長方形,若按此規(guī)律繼續(xù)作長方形,則序號為⑦的長方形周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于、兩點(diǎn),與軸交于,點(diǎn)為拋物線上一動點(diǎn),過點(diǎn)作平行交拋物線于,、兩點(diǎn)間距離為
求的解析式;
取線段中點(diǎn),連接,當(dāng)最小時(shí),判斷以點(diǎn)、、、為頂點(diǎn)的四邊形是什么四邊形;
設(shè)為軸上一點(diǎn),在的基礎(chǔ)上,當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com