【題目】如圖,△ABC內(nèi)接于⊙O,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)E,交⊙O于點(diǎn)D,延長(zhǎng)AC交DB延長(zhǎng)線(xiàn)于點(diǎn)F,BF=,連接AO、CO.CO與AB相交于點(diǎn)G,∠CGE=3∠CAB,OC=10,將圓心O繞著點(diǎn)B旋轉(zhuǎn)得到點(diǎn)O′,若點(diǎn)O′恰好落△ADF某一邊上時(shí),則OO′的長(zhǎng)度為_____.
【答案】
【解析】
延長(zhǎng)AO交BD于H,連接OB,OD,根據(jù)全等三角形的性質(zhì)得到AB=AD,推出AH垂直平分BD,根據(jù)平行線(xiàn)分線(xiàn)段成比例得到 ,根據(jù)勾股定理得到OO′= =4 ,過(guò)O作OO′⊥AB于K交AF于O′,根據(jù)菱形的性質(zhì)得到O′B=OB=5,再根據(jù)勾股定理即可得到結(jié)論.
解:延長(zhǎng)AO交BD于H,連接OB,OD,
∵∠ADC=∠AOC=(180°﹣∠OAC﹣∠OCA)=(180°﹣4∠CAB)=90°﹣2∠CAB,
∴∠DAB=90°﹣∠ADC=2∠CAB=2∠OAB,
∴∠OAD=∠OAB,∵OA=OB=OD,
∴∠OBA=∠OAB=∠OAD=∠ODA,
∴∠AOB=∠AOD,
在△OAB與△OAD中 ,
∴△OAB≌△OAD,
∴AB=AD,
∵∠OAB=∠OAD,
∴AH垂直平分BD,
∵∠OBA=∠OAB=∠BAC,
∴OB∥AF,
∴,
令OH=4a,則BH=3a,OB=5a=10,∴a=2,
∴BD=2BH=12,
當(dāng)O′在BD上時(shí),O′H=O′B﹣BH=4,
∴OO′==4,
過(guò)O作OO′⊥AB于K交AF于O′,
則四邊形OAO′B是菱形,
∴O′B=OB=5,BK=AB=3 ,
∴OK= = ,
∴OO′=2OK=2.
故答案為:4或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD,點(diǎn)E是AB的中點(diǎn),AF⊥BC于點(diǎn)F,聯(lián)結(jié)EF、ED、DF,DE交AF于點(diǎn)G,且AE2=EGED.
(1)求證:DE⊥EF;
(2)求證:BC2=2DFBF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2.若=﹣1,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(2,a),半徑為2,直線(xiàn)y=﹣x與⊙P相交于A、B兩點(diǎn),若弦AB的長(zhǎng)為2,則a的值是( 。
A. ﹣2B. ﹣2+C. ﹣2﹣D. ﹣2﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,矩形ABCD的對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,點(diǎn)O關(guān)于直線(xiàn)AD的對(duì)稱(chēng)點(diǎn)是E,連接AE、DE.
(1)試判斷四邊形AODE的形狀,不必說(shuō)明理由;
(2)請(qǐng)你連接EB、EC,并證明EB=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,過(guò)點(diǎn)O作EF⊥AC分別交射線(xiàn)AD與射線(xiàn)CB于點(diǎn)E和點(diǎn)F,聯(lián)結(jié)CE、AF.
(1)求證:四邊形AFCE是菱形;
(2)當(dāng)點(diǎn)E、F分別在邊AD和BC上時(shí),如果設(shè)AD=x,菱形AFCE的面積是y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;
(3)如果△ODE是等腰三角形,求AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】宿豫區(qū)教育局在動(dòng)員教師學(xué)習(xí)“黨的十九大”精神活動(dòng)中,組織全區(qū)教師參加了“黨的十九大知識(shí)競(jìng)賽”,賽后隨機(jī)抽取了某校部分教師的成績(jī),按從低分到高分將成績(jī)分成A,B,C,D,E五組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100(滿(mǎn)分100分).繪制成下面兩個(gè)不完整的統(tǒng)計(jì)圖:
根據(jù)上面提供的信息解答下列問(wèn)題:
(1)D類(lèi)所對(duì)應(yīng)的圓心角是 度,樣本中成績(jī)的中位數(shù)落在 類(lèi)中;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若將D、E兩組成績(jī)定為優(yōu)秀,全區(qū)參加本次“黨的十九大知識(shí)競(jìng)賽”共有2000名教師,估計(jì)全區(qū)參加競(jìng)賽達(dá)到優(yōu)秀的教師共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y= 的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是( 。
A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假到了,即將迎來(lái)手機(jī)市場(chǎng)的銷(xiāo)售旺季.某商場(chǎng)銷(xiāo)售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場(chǎng)計(jì)劃投入15.5萬(wàn)元資金,全部用于購(gòu)進(jìn)兩種手機(jī)若干部,期望全部銷(xiāo)售后可獲毛利潤(rùn)不低于2萬(wàn)元.(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷(xiāo)售量)
(1)若商場(chǎng)要想盡可能多的購(gòu)進(jìn)甲種手機(jī),應(yīng)該安排怎樣的進(jìn)貨方案購(gòu)進(jìn)甲乙兩種手機(jī)?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在甲種手機(jī)購(gòu)進(jìn)最多的方案上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷(xiāo)售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com