(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式.

【答案】分析:(1)根據(jù)正方形的面積公式可求得點(diǎn)B的坐標(biāo),從而求得k值.
(2)先根據(jù)正方形的性質(zhì)求得點(diǎn)F的縱坐標(biāo)和點(diǎn)E的橫坐標(biāo),代入反比例函數(shù)解析式求得其坐標(biāo),利用待定系數(shù)法求得直線EF的解析式.
解答:解:(1)∵四邊形OABC是面積為4的正方形,
∴OA=OC=2,
∴點(diǎn)B坐標(biāo)為(2,2),
將x=2,y=2代入反比例解析式得:2=,
∴k=2×2=4.

(2)∵正方形MABC′、NA′BC由正方形OABC翻折所得,
∴ON=OM=2AO=4,
∴點(diǎn)E橫坐標(biāo)為4,點(diǎn)F縱坐標(biāo)為4.
∵點(diǎn)E、F在函數(shù)y=的圖象上,
∴當(dāng)x=4時(shí),y=1,即E(4,1),
當(dāng)y=4時(shí),x=1,即F(1,4).
設(shè)直線EF解析式為y=mx+n,將E、F兩點(diǎn)坐標(biāo)代入,
,
∴m=-1,n=5.
∴直線EF的解析式為y=-x+5.
點(diǎn)評(píng):此題綜合考查了反比例函數(shù)與一次函數(shù)的性質(zhì),綜合性比較強(qiáng),注意反比例函數(shù)上的點(diǎn)向x軸y軸引垂線形成的矩形面積等于反比例函數(shù)的k值.要會(huì)熟練地運(yùn)用待定系數(shù)法求函數(shù)解析式,這是基本的計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省溫州市永嘉縣甌北二中九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•蘇州)如圖,以A為頂點(diǎn)的拋物線與y軸交于點(diǎn)B、已知A、B兩點(diǎn)的坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)M(m,n)是拋物線上的一點(diǎn)(m、n為正整數(shù)),且它位于對(duì)稱軸的右側(cè).若以M、B、O、A為頂點(diǎn)的四邊形四條邊的長度是四個(gè)連續(xù)的正整數(shù),求點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,試問:對(duì)于拋物線對(duì)稱軸上的任意一點(diǎn)P,PA2+PB2+PM2>28是否總成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省蘇州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•蘇州)如圖,四邊形OABC是面積為4的正方形,函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求k的值;
(2)將正方形OABC分別沿直線AB、BC翻折,得到正方形MABC′、NA′BC.設(shè)線段MC′、NA′分別與函數(shù)(x>0)的圖象交于點(diǎn)E、F,求線段EF所在直線的解析式.

查看答案和解析>>

同步練習(xí)冊答案