把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與E重合),點(diǎn)B、C(E)、F在同一條直線上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)A出發(fā),以2cm/s的速度沿AB向點(diǎn)B勻速移動(dòng);當(dāng)點(diǎn)P移動(dòng)到點(diǎn)B時(shí),點(diǎn)P停止移動(dòng),△DEF也隨之停止移動(dòng).DE與AC交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s).
(1)用含t的代數(shù)式表示線段AP和AQ的長(zhǎng),并寫(xiě)出t的取值范圍;
(2)連接PE,設(shè)四邊形APEQ的面積為y(cm2),試探究y的最大值;
(3)當(dāng)t為何值時(shí),△APQ是等腰三角形.
精英家教網(wǎng)
分析:(1)根據(jù)題意以及直角三角形性質(zhì)表達(dá)出CQ、AQ,從而得出結(jié)論,
(2)作PG⊥x軸,將四邊形的面積表示為S△ABC-S△BPE-S△QCE即可求解,
(3)根據(jù)題意以及三角形相似對(duì)邊比例性質(zhì)即可得出結(jié)論.
解答:(1)解:AP=2t
∵∠EDF=90°,∠DEF=45°,
∴∠CQE=45°=∠DEF,
∴CQ=CE=t,
∴AQ=8-t,
t的取值范圍是:0≤t≤5;

(2)過(guò)點(diǎn)P作PG⊥x軸于G,可求得AB=10,SinB=
4
5
,PB=10-2t,EB=6-t,
∴PG=PBSinB=
4
5
(10-2t)
∴y=S△ABC-S△PBE-S△QCE=
1
2
×6×8-
1
2
(6-t)×
4
5
(10-2t)-
1
2
t2
=-
13
10
t2+
44
5
t=-
13
10
(t-
44
13
)2+
968
65

∴當(dāng)t=
44
13
(在0≤t≤5內(nèi)),y有最大值,y最大值=
968
65
(cm2
精英家教網(wǎng)
(3)若AP=AQ,則有2t=8-t解得:t=
8
3
(s)
若AP=PQ,如圖①:過(guò)點(diǎn)P作PH⊥AC,則AH=QH=
8-t
2
,PH∥BC
∴△APH∽△ABC,
AP
AH
=
AB
AC

2t
8-t
2
=
10
8
,
解得:t=
40
21
(s)
若AQ=PQ,如圖②:過(guò)點(diǎn)Q作QI⊥AB,則AI=PI=
1
2
AP=t
∵∠AIQ=∠ACB=90°∠A=∠A,
∴△AQI∽△ABC
AI
AQ
=
AC
AB
t
8-t
=
8
10
,
解得:t=
32
9
(s)
綜上所述,當(dāng)t=
8
3
40
21
32
9
時(shí),△APQ是等腰三角形.
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì)、二次函數(shù)的最值、特殊圖形的面積的求法等知識(shí),圖形較復(fù)雜,考查學(xué)生數(shù)形結(jié)合的能力,綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng)、DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5)解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說(shuō)明理由;
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•晉江市質(zhì)檢)已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).解答下列問(wèn)題:
(1)填空:CQ=
t
t
,AQ=
8-t
8-t
(用含t的式子表示);
(2)當(dāng)t為何值時(shí),點(diǎn)P在以AQ為直徑的⊙M上?
(3)當(dāng)P、Q、F三點(diǎn)在同一條直線上時(shí),如圖(3),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,把Rt△ABC和Rt△DEF按圖1擺放(點(diǎn)C與E重合),點(diǎn)B,C,E,F(xiàn)始終在同一條直線上,∠ACB=∠EDF=45°,AC=8,BC=6,EF=10.如圖2,△DEF從圖1位置出發(fā),以每秒1個(gè)單位的速度沿CB向△ABC勻速運(yùn)動(dòng),同時(shí),點(diǎn)P從點(diǎn)A出發(fā),沿AB以每秒1個(gè)單位的速度向點(diǎn)B勻速運(yùn)動(dòng),AC與△DEF的直角邊相交于點(diǎn)Q,當(dāng)E到達(dá)終點(diǎn)B時(shí),△DEF與點(diǎn)P同時(shí)停止運(yùn)動(dòng),連接PQ,設(shè)移動(dòng)的時(shí)間為t(s).解答下列問(wèn)題:
(1)當(dāng)D在AC上時(shí),求t的值;
(2)在P點(diǎn)運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)P,使△APQ為等腰三角形?若存在,求出t的值;若不存在,說(shuō)明理由.
(3)連接PE,設(shè)四邊形APEQ的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•安溪縣質(zhì)檢)已知:把Rt△ABC和Rt△DEF按圖(a)擺放,點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8厘米,BC=6厘米,EF=9厘米.如圖(b),△DEF從圖(a)的位置出發(fā),以1厘米/秒的速度沿CB向△ABC勻速移動(dòng),點(diǎn)P同時(shí)從點(diǎn)B出發(fā),以2厘米/秒的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí)移動(dòng)即停止.記DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(秒)(0<t<4.5).求:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上;
(2)當(dāng)t為何值時(shí),△APQ與△ABC相似;
(3)當(dāng)t為何值時(shí),點(diǎn)P、Q、F在同一直線上.

查看答案和解析>>

同步練習(xí)冊(cè)答案