【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到了“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
【答案】
(1)60;90°
(2)
解:60﹣15﹣30﹣10=5;
補(bǔ)全條形統(tǒng)計(jì)圖得:
(3)
解:根據(jù)題意得:900× =300(人),
則估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為300人
(4)
解:畫樹狀圖得:
∵共有20種等可能的結(jié)果,恰好抽到1個(gè)男生和1個(gè)女生的有12種情況,
∴恰好抽到1個(gè)男生和1個(gè)女生的概率為: =
【解析】解:(1)∵了解很少的有30人,占50%,
∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);
∴扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為: ×360°=90°;
所以答案是:60,90°;
【考點(diǎn)精析】掌握扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1 , A2 , A3…都在x軸上,點(diǎn)B1 , B2 , B3…都在直線y=x上,△OA1B1 , △B1A1A2 , △B2B1A2 , △B2A2A3 , △B3B2A3…都是等腰直角三角形,且OA1=1,則點(diǎn)B2015的坐標(biāo)是( 。
A.(22014 , 22014)
B.(22015 , 22015)
C.(22014 , 22015)
D.(22015 , 22014)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:如果y′= ,那么稱點(diǎn)Q為點(diǎn)P的“關(guān)聯(lián)點(diǎn)”.例如:點(diǎn)(5,6)的“關(guān)聯(lián)點(diǎn)”為點(diǎn)(5,6),點(diǎn)(﹣5,6)的“關(guān)聯(lián)點(diǎn)”為點(diǎn)(﹣5,﹣6).
(1)如果點(diǎn)A(3,﹣1),B(﹣1,3)的“關(guān)聯(lián)點(diǎn)”中有一個(gè)在函數(shù)y= 的圖象上,那么這個(gè)點(diǎn)是(填“點(diǎn)A”或“點(diǎn)B”).
(2)如果點(diǎn)N*(m+1,2)是一次函數(shù)y=x+3圖象上點(diǎn)N的“關(guān)聯(lián)點(diǎn)”,求點(diǎn)N的坐標(biāo).
(3)如果點(diǎn)P在函數(shù)y=﹣x2+4(﹣2<x≤a)的圖象上,其“關(guān)聯(lián)點(diǎn)”Q的縱坐標(biāo)y′的取值范圍是﹣4<y′≤4,那么實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在銳角△ABC中,D,E分別為AB,BC中點(diǎn),F(xiàn)為AC上一點(diǎn),且∠AFE=∠A,DM∥EF交AC于點(diǎn)M.
(1)求證:DM=DA;
(2)點(diǎn)G在BE上,且∠BDG=∠C,如圖②,求證:△DEG∽△ECF;
(3)在圖②中,取CE上一點(diǎn)H,使∠CFH=∠B,若BG=1,求EH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E,H,G,N在同一直線上,△EFG≌△NMH,∠F和∠M是對(duì)應(yīng)角.在△EFG中,FG是最長邊.在△NMH中,MH是最長邊.已知EF=2.1 cm,EH=1.1 cm,HN=3.3 cm.
(1)寫出其他對(duì)應(yīng)邊及對(duì)應(yīng)角;
(2)求線段MN及線段HG的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊△ABC中,D為AC中點(diǎn),∠EDF=120°,DF交AB于F點(diǎn),且AF=nBF(n為常數(shù),且n>1).
(1)求證:DF=DE;
(2)如圖1,求證:AF﹣CE=AB;
(3)如圖2,當(dāng)n= 時(shí),過D作DM⊥BC于M點(diǎn),C為EM的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB>AC , 分別以點(diǎn)B和點(diǎn)C為圓心,大于BC一半的長為半徑作圓弧,兩弧相交于點(diǎn)M和點(diǎn)N , 作直線MN交AB于點(diǎn)D;連結(jié)CD.若AB=7,AC=5,則△ACD的周長為( )
A.2
B.12
C.17
D.19
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算題
(1)計(jì)算:|1﹣ |﹣3tan30°+(π﹣2017)0﹣(﹣ )﹣1
(2)解不等式組 并在數(shù)軸上表示它的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com