【題目】如圖,已知拋物線y=ax2+bx+3與x軸交于A、B兩點,過點A的直線l與拋物線交于點C,其中A點的坐標是(1,0),C點坐標是(4,3).
(1)求拋物線的解析式;
(2)設直線l與y軸交于點D,拋物線交y軸于點E,則△DBE的面積是多少?
【答案】(1)拋物線的解析式為y=x2-4x+3;(2)6.
【解析】
(1)把A點和C點坐標代入y=ax2+bx+3可得到關于a、b的方程組,然后解方程求出a、b即可得到拋物線解析式;
(2)先利用待定系數(shù)法求出直線l的解析式,再利用坐標軸上點的坐標特征求出D、E、A、B的坐標,然后根據(jù)三角形面積公式求解.
解:(1)∵拋物線y=ax2+bx+3經(jīng)過點A(1,0),點C(4,3),
∴,解得
所以拋物線的解析式為y=x2﹣4x+3;
(2)設直線l的解析式為y=kx+m(k≠0),
把A(1,0),點C(4,3)代入得,解得,
∴直線l的解析式為y=x﹣1,
當x=0時,y=x﹣1=﹣1,則D(0﹣1),
當x=0時,y=x2﹣4x+3=3,則E(0,3),
當y=0時,x2﹣4x+3=3,解得x1=1,x2=3,則B(3,0),
∴△DBE的面積=×(3+1)×3=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 某校為了解九年級男同學的體育考試準備情況,隨機抽取部分男同學進行了1000米跑測試.按照成績分為優(yōu)秀、良好、合格與不合格四個等級.學校繪制了如下不完整的統(tǒng)計圖.
(1)根據(jù)給出的信息,補全兩幅統(tǒng)計圖;
(2)該校九年級有600名男生,請估計成績未達到良好有多少名?
(3)某班甲、乙兩位成績優(yōu)秀的同學被選中參加即將舉行的學校運動會1000米比賽,預賽分為A、B、C三組進行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線的函數(shù)表達式為,它與軸、軸的交點分別為A、B兩點.
(1)求點A、B的坐標;
(2)設F是軸上一動點,⊙P經(jīng)過點B且與軸相切于點F,設⊙P的圓心坐標為P(x,y),求y與之間的函數(shù)關系;
(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點B?若存在,求出圓心P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A(-1,0),B(5,0)兩點,直線與y軸交于點C,與x軸交于點D。點P是x軸上方的拋物線上一動點,過點P作PF⊥x軸與點F,交直線CD于點E。設點P的橫坐標為m。
(1)求拋物線的解析式;
(2)若PF=5EF,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在4×4的網(wǎng)格中,每一個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點,以O為坐標原點建立如圖所示的平面直角坐標系.若拋物線y=x2+bx+c的圖象至少經(jīng)過圖中(4×4的網(wǎng)格中)的三個格點,并且至少一個格點在x軸上,則符合要求的拋物線一定不經(jīng)過的格點坐標為( 。
A.(1,3)B.(2,3)C.(1,4)D.(2,4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉出的數(shù)字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數(shù),重新轉動轉盤,直到指針指向一個扇形的內(nèi)部為止)
(1)轉動轉盤一次,求轉出的數(shù)字是-2的概率;
(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com