【題目】閱讀下列材料,并完成任務. 三角形的外心定義:三角形三邊的垂直平分線相交于一點,這個點叫做三角形的外心,如圖1,直線分別是邊的垂直平分線.

求證:直線相交于一點.

證明:如圖2,設相交于點,分別連接

的垂直平分線,

,(依據(jù)1

的垂直平分線,

,

,(依據(jù)2

的垂直平分線,

∴點上,(依據(jù)3

∴直線相交于一點.

1)上述證明過程中的依據(jù)1”“依據(jù)2”“依據(jù)3”分別指什么?

2)如圖3,直線分別是的垂直平分線,直線相交于點,點 的外心,于點于點,分別連接、、、. ,的周長為,求的周長.

【答案】1)依據(jù)1:線段垂直平分線上的點與這條線段兩個端點的距離相等;依據(jù)2:等量代換;依據(jù)3:與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;(2

【解析】

1)根據(jù)推理過程和垂直平分線的性質(zhì)和判定得出答案

2)根據(jù)垂直平分線的性質(zhì)得出的周長=BC,再根據(jù)的周長即可得出答案

1)依據(jù)1:線段垂直平分線上的點與這條線段兩個端點的距離相等

依據(jù)2:等量代換

依據(jù)3:與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

2)解:直線的的垂直平分線

直線的的垂直平分線

的周長,

的周長為

的周長為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面角坐標系中,拋物線C1:y=ax2+bx﹣1經(jīng)過點A(﹣2,1)和點B(﹣1,﹣1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.

(1)求拋物線C1的表達式;

(2)直接用含t的代數(shù)式表示線段MN的長;

(3)當AMN是以MN為直角邊的等腰直角三角形時,求t的值;

(4)在(3)的條件下,設拋物線C1y軸交于點P,點My軸右側(cè)的拋物線C2上,連接AMy軸于點k,連接KN,在平面內(nèi)有一點Q,連接KQQN,當KQ=1且∠KNQ=BNP時,請直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,圖形ABCD是由兩個二次函數(shù)y1=kx2+mk<0)與y2=ax2+ba>0)的部分圖象圍成的封閉圖形.已知A(1,0)、B(0,1)、D(0,﹣3).

(1)直接寫出這兩個二次函數(shù)的表達式;

(2)判斷圖形ABCD是否存在內(nèi)接正方形(正方形的四個頂點在圖形ABCD上),并說明理由;

(3)如圖2,連接BCCD,AD在坐標平面內(nèi),求使得BDCADE相似(其中點C與點E是對應頂點)的點E的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點PAD的中點,連接AE,BD,PM,PN,MN.

(1)觀察猜想:

1中,PMPN的數(shù)量關系是   ,位置關系是   

(2)探究證明:

將圖1中的△CDE繞著點C順時針旋轉(zhuǎn)α(0°<α<90°),得到圖2,AEMP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;

(3)拓展延伸:

△CDE繞點C任意旋轉(zhuǎn),若AC=4,CD=2,請直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,則________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市推出電腦上網(wǎng)包月制,每月收取費用y(元)與上網(wǎng)時間x(小時)的函數(shù)關系如圖所示,其中BA是線段,且BAx軸,AC是射線.

(1)當x30,求y與x之間的函數(shù)關系式;

(2)若小李4月份上網(wǎng)20小時,他應付多少元的上網(wǎng)費用?

(3)若小李5月份上網(wǎng)費用為75元,則他在該月份的上網(wǎng)時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.

1)該商家購進的第一批襯衫是多少件?

2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,分別是雙曲線在第一、三象限上的點,軸,軸,垂足分別為,,點軸的交點.設的面積為,的面積為的面積為,則有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B=32°,將△ABC沿直線m翻折,點B落在點D的位置,則∠1-2的度數(shù)是(

A. 32° B. 64° C. 65° D. 70°

查看答案和解析>>

同步練習冊答案