在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(0,4),C點(diǎn)坐標(biāo)為(10,0).

(1)如圖①,若直線AB∥OC,AB上有一動(dòng)點(diǎn)P,當(dāng)P點(diǎn)的坐標(biāo)為________時(shí),有PO=PC;

(2)如圖②,若直線AB與OC不平行,在過(guò)點(diǎn)A的直線y=-x+4上是否存在點(diǎn)P,使∠OPC=90°,若有這樣的點(diǎn)P,求出它的坐標(biāo).若沒(méi)有,請(qǐng)簡(jiǎn)要說(shuō)明理由;

(3)若點(diǎn)P在直線y=kx+4上移動(dòng)時(shí),只存在一個(gè)點(diǎn)P使∠OPC=90°,試求出此時(shí)y=kx+4中k的值是多少?

答案:
解析:

  (1)(5,4)

  (2)設(shè)P(x,-x+4)

  連接OP、PC,過(guò)P作PE⊥OC于E,過(guò)P點(diǎn)作PN⊥OA于N

  因?yàn)镺P2=x2+(-x+4)2

  PC2=(-x+4)2+(10-x)2

  OP2+PC2=OC2

  所以x2+(-x+4)2+(-x+4)2+(10-x)2=102

  x2-9x+8=0

  x1=1,x2=8

  所以P坐標(biāo)(1,3)或(8,-4).

  (3)

  作以O(shè)C為直徑的⊙F,當(dāng)過(guò)A的直線y=kx+4切⊙F于點(diǎn)P時(shí),直線y=kx+4與x軸交于點(diǎn)M,此時(shí)只有一個(gè)點(diǎn)P.

  易知:△MAO∽△MFP

  由MO∶MP=OA∶FP,

  設(shè)MO=a,由PF=5,OA=4

  得MP=a

  在Rt△MPF中,由MP2+PF2=MF2得(a)2+52=(a+5)2

  得a1=0(不合題意,舍去),a2

  因?yàn)閥=kx+4與x軸交點(diǎn)的橫坐標(biāo)為

  

  又當(dāng)直線y=kx+4過(guò)點(diǎn)C(10,0)時(shí),過(guò)原點(diǎn)O有惟一的一條直線與此直線垂直

  此時(shí)k=


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過(guò)A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問(wèn),考慮有沒(méi)有更簡(jiǎn)捷的解題策略?請(qǐng)說(shuō)出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過(guò)程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過(guò)程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過(guò)【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案