解:(1)①∵點(diǎn)D、E從點(diǎn)C同時(shí)出發(fā),分別以1cm/s和2cm/s的速度移動,
設(shè)點(diǎn)D、E運(yùn)動的時(shí)間為t秒,
∴CD=1t=t,CE=2t,
∴DE=CE-CD=2t-t=t,
∵等邊△DEF,
∴DE=DF=EF=t,即邊長為t,
②當(dāng)F在AB上時(shí),
∵DE=t,
∴CD=DE=EF=DF=t,
∵等邊△DEF,
∴∠FDE=60°,
∴∠FCD=30°,
∴∠ACF=60°,
∵∠A=60°,∠B=30°,
∴當(dāng)F在AB,CF=AF=BF,
∵BC=6,
∴AB=4
,AC=2
,
∴CF=2
,
∵∠CEF=60°,
∴CF⊥EF,
∴sin60°=
=
,
∵CE=2t,
∴
,
∴t=2,
(2)①當(dāng)⊙A與DF相切,連接AD,
∵⊙A與DF相切,
∴AB⊥DF,
又∵AC⊥BC,
∴∠ACD=∠AFD=90°,
又∵AD=AD,AC=AF,
∴△ACD≌△AFD(HL),
∴AF=AC,
∴BC與⊙A相切于點(diǎn)C,
∵AC=2
,∠FDB=60°,
∴∠ADC=60°,
∵CD=t,
∴tan60°=
=
,
∴t=2
②若⊙A與CF相切,
∴CF⊥AF,
∵AC=2
,∠ACF=60°,
∴cos60°=
=
,
∴CF=
,
∵∠FCE=30°,∠FEC=60°,
∴EF⊥CF,
∴cos30°=
=
,
∵CE=2t,
∴
,
∴t=1,
(3)當(dāng)t=1.5或t=1時(shí),使得以A、C、E、G為頂點(diǎn)的四邊形為梯形,
①如圖:若GE∥AC時(shí),四邊形ACEG為梯形,
連接FH,
∵AC⊥BC,
∴GE⊥BC,
∵∠B=30°,
∴∠G=30°,
∵F、G兩點(diǎn)關(guān)于AB成對稱點(diǎn),
∴∠GFH=30°,
∵∠FEC=60°,
∴∠FEG=30°,
∴∠GFE=120°,
∴∠HFE=90°,
∵∠CFD=60°,∠DEF=30°,
∴∠CFH=180°,即CF,F(xiàn)H在同一條直線上,
∵∠ACF=∠A=60°,∠FCB=∠B=30°,
∴CH=AH=HB,
∵AB=4
,
∴CH=AH=HB=2
,
∴HE=
,
∵∠FEH=∠B=30°,∠ACB=∠HFE=90°,
∴△ACB∽△HFE,
∴
,
∵AB=4
,BC=6,
∴HE=
,EF=t,
∴t=1.5
②若AG∥CE時(shí),四邊形ACEG為梯形,
連接AF,F(xiàn)G,設(shè)與AB交于M點(diǎn),
∵G,F(xiàn)兩點(diǎn)關(guān)于AB對稱,
∴AF=AG,F(xiàn)M=GM,AB⊥FG,
∴△AFM≌△AGM,
∴∠FAM=∠GAM,∠AFM=∠AGM,
∵AG∥BC,
∴∠B=∠GAM=30°,
∴∠FAM=30°,
∴∠AFM=60°,
∵∠FED=60°,∠B=30°,
∴∠FEB=120°,
∵在四邊形MFEB中,∠FMB=90°,
∴∠FEB=120°,
∵∠CFE=90°,∠AFM=60°,
∴∠AFE=180°,
∴A,F(xiàn),E在同一條直線上,
∵∠AFC=90°,
∴△ACE是直角三角形,
∵∠CEF=60°,
∴tan60°=
=
,即
,
∴t=1.
③如備用圖:
,
當(dāng)t=
時(shí),使得以A、C、E、G為頂點(diǎn)的四邊形為梯形.
綜上可得當(dāng)t=1.5或t=1或
時(shí),使得以A、C、E、G為頂點(diǎn)的四邊形為梯形.
分析:(1)①根據(jù)運(yùn)動的時(shí)間和速度,即可推出CD,CE的長度,便可推出邊長DE的長度,②根據(jù)題意推出CF的長度,然后通過求∠CEF=60°,∠FCD=30°推出直角三角形,最后根據(jù)∠CEF的正切值推出t的值,(2)首先根據(jù)題意畫出圖形,然后逐個(gè)進(jìn)行討論解答,①當(dāng)⊙A與DF相切,通過求證△ACD≌△AFD,即可推出此時(shí)BC與⊙A相切于點(diǎn)C,然后通過直角三角形中特殊角的函數(shù)值,即可推出t的值,②若⊙A與CF相切,根據(jù)(1)中已求證的結(jié)論,結(jié)合直角三角形中特殊角的函數(shù)值,即可推出t的取值,(3)分情況進(jìn)行討論,①若GE∥AC時(shí),四邊形ACEG為梯形,連接FH,通過相關(guān)角的度數(shù)關(guān)系推出CF,F(xiàn)H在同一條直線上,然后通過求證△ACB∽△HFE,推出
,即可推出t的值;②若AG∥CE時(shí),四邊形ACEG為梯形,連接AF,F(xiàn)G,根據(jù)對稱的性質(zhì),即可推出△AFM≌△AGM,即得∠FAM=∠GAM,∠AFM=∠AGM,便可知∠AFE=90°,通過A,F(xiàn),E在同一條直線上,推出△ACE是Rt△,最后根據(jù)直角三角形中特殊角的函數(shù)值即可推出t的值.
點(diǎn)評:本題主要考查切線的性質(zhì)、全等三角形的判定和性質(zhì)、解直角三角形、等邊三角形的性質(zhì),關(guān)鍵在于正確地作輔助線,認(rèn)真地計(jì)算,熟練運(yùn)用相關(guān)的定理和性質(zhì).