【題目】如圖,已知梯形中,,,,是邊上一點(diǎn),過(guò)、分別作、的平行線交于點(diǎn),聯(lián)結(jié)并延長(zhǎng),與射線交于點(diǎn)

(1)當(dāng)點(diǎn)與點(diǎn)重合時(shí),求的值;

(2)當(dāng)點(diǎn)在邊.上時(shí),設(shè),求的面積;(用含的代數(shù)式表示)

(3)當(dāng)時(shí),求的余弦值.

【答案】1 ;(2 ;(3

【解析】

1)由題意可得四邊形DCEF是平行四邊形,可得CD=EF,通過(guò)證明△CFE∽△CAB進(jìn)行分析求值即可;

2)根據(jù)題意延長(zhǎng)AG,BC交為于點(diǎn)M,過(guò)點(diǎn)CCNAB于點(diǎn)N,交EF于點(diǎn)H,由題意可得四邊形ADCN是矩形,可得AD=CN=4CD=AN=3,BN=3,由平行線分線段成比例可求BEME,MCCH,GC的長(zhǎng),即可求GD的長(zhǎng),由三角求形面積公式可△DFG的面積;

3)根據(jù)題意由△AFD∽△ADG,可得∠AFD=ADG=90°,由余角的性質(zhì)可得∠DAG=B,即可求∠DAG的余弦值.

解:(1)如圖,

DCEF,DFCE,

∴四邊形DCEF是平行四邊形,

CD=EF

AB=2CD=6,

AB=2EF

EFCD,ABCD

EFAB,

∴△CFE∽△CAB,

,

BC=2CE

BE=CE,

ECBE=11=1.

2)如圖,延長(zhǎng)AG,BC交為于點(diǎn)M,過(guò)點(diǎn)CCNAB于點(diǎn)N,交EF于點(diǎn)H,

ADCD,CNCD,

ADCN,且CDAB,

∴四邊形ADCN是平行四邊形,

又∵∠DAB=90°,

∴四邊形ADCN是矩形,

AD=CN=4,CD=AN=3

BN=AB-AN=3,

RtBCN中,BC=,

BE=BC-CE=5-m,

EFAB,

,

ME=BE=5-m

MC=ME-CE=5-2m,

EFAB,

,

HC=,

CGEF

,即,

,

.

3)過(guò)點(diǎn)CCNAB于點(diǎn)N,

ABCD,∠DAB=90°,

∴∠DAB=ADG=90°,

若△AFD∽△ADG

∴∠AFD=ADG=90°,

DFAG,

又∵DFBC

AGBC,

∴∠B+GAB=90°,且∠DAG+GAB=90°,

∴∠B=DAG

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以為直徑作圓,分別交于點(diǎn),交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)于點(diǎn),連接交線段于點(diǎn)

1)求證:是圓的切線;

2)若的中點(diǎn),求的值;

3)若,求圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),如圖所示,并規(guī)定:顧客消費(fèi)200元(含200元)以上,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)九折、八折、七折區(qū)域,顧客就可以獲得此項(xiàng)優(yōu)惠,如果指針恰好在分割線上時(shí),則需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).

1)某顧客正好消費(fèi)220元,他轉(zhuǎn)一次轉(zhuǎn)盤(pán),他獲得九折、八折、七折優(yōu)惠的概率分別是多少?

2)某顧客消費(fèi)中獲得了轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)的機(jī)會(huì),實(shí)際付費(fèi)168元,請(qǐng)問(wèn)他消費(fèi)所購(gòu)物品的原價(jià)應(yīng)為多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校在宣傳民族團(tuán)結(jié)活動(dòng)中,采用四種宣傳形式:A.器樂(lè),B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對(duì)學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中所給信息,解答下列問(wèn)題:

(1)本次調(diào)查的學(xué)生共有_____人;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)選擇唱歌的學(xué)生有多少人?

(4)七年一班在最喜歡器樂(lè)的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機(jī)選出兩名同學(xué)參加學(xué)校的器樂(lè)隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖法求被選取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,點(diǎn)、分別與點(diǎn)、對(duì)應(yīng),與邊交于點(diǎn).如果,那么的長(zhǎng)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABACD是邊BC的中點(diǎn),DEAC,垂足為點(diǎn) E

(1)求證:DECDADCE;

(2)設(shè)FDE的中點(diǎn),連接AF、BE,求證:AFBCADBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)三角形一條邊的平方等于另兩條的乘積,我們把這個(gè)三角形叫做比例三角形.

1)已知是比例三角形,,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的的長(zhǎng);

2)如圖,在四邊形中,,對(duì)角線平分,.求證:是比例三角形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是有公共頂點(diǎn)的直角三角形,,點(diǎn)P為射線BD,CE的交點(diǎn).

1)如圖1,若是等腰三角形,求證:;

2)如圖2,若,問(wèn):(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.

3)在(1)的條件下,若,,若把繞點(diǎn)A旋轉(zhuǎn),當(dāng)時(shí),求PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于一個(gè)函數(shù),如果它的自變量 x 與函數(shù)值 y 滿(mǎn)足:當(dāng)1≤x≤1 時(shí),1≤y≤1,則稱(chēng)這個(gè)函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過(guò)點(diǎn) A(1,1)和點(diǎn) B(1,1),則 a 的取值范圍是______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案