【題目】如圖,已知:拋物線yx2+bx+cx軸交于A(﹣10),B3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為頂點(diǎn),連接BDCD,拋物線的對(duì)稱軸與x軸交與點(diǎn)E

1)求拋物線解析式及點(diǎn)D的坐標(biāo);

2G是拋物線上B,D之間的一點(diǎn),且S四邊形CDGB4SDGB,求出G點(diǎn)坐標(biāo);

3)在拋物線上B,D之間是否存在一點(diǎn)M,過(guò)點(diǎn)MMNCD,交直線CD于點(diǎn)N,使以C,M,N為頂點(diǎn)的三角形與△BDE相似?若存在,求出滿足條件的點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

【答案】1;頂點(diǎn);(2;(3)存在,點(diǎn)

【解析】

1)利用待定系數(shù)法可求得拋物線的解析式,然后化成頂點(diǎn)式可得點(diǎn)D的坐標(biāo);

2)連接BC,BGDG,首先求出,然后根據(jù)S四邊形CDGB4SDGB可得,求出直線的解析式,設(shè),則Hx2x-6),根據(jù)得出方程,解方程求出x即可解決問(wèn)題;

3)如圖3,以C,M,N為頂點(diǎn)的三角形與BDE相似,則以BC,P為頂點(diǎn)的三角形與BDE相似,則,求出;然后分兩種情況,分別求出直線CP的解析式即可解決問(wèn)題.

解:(1拋物線軸交于,兩點(diǎn),

,解得,

∴拋物線的解析式為:;

,

頂點(diǎn)的坐標(biāo)為

2)如圖2,連接,BGDG,

中,令,則,

∴點(diǎn),

∴易求直線的解析式為,

設(shè)直線與對(duì)稱軸相交于點(diǎn),

當(dāng)時(shí),,

∴點(diǎn),

,

四邊形,

,

設(shè)過(guò)點(diǎn)軸平行的直線交BD于點(diǎn),直線的解析式為,

,解得

∴直線的解析式為,

設(shè),則Hx,2x-6),

,

,

整理得,,

解得:,則,

∴點(diǎn);

3)存在,

由勾股定理得,,

如圖3,過(guò)點(diǎn)的延長(zhǎng)線于,

,,

,軸的夾角都是,

,

,

,

、為頂點(diǎn)的三角形與相似,

、、為頂點(diǎn)的三角形與相似,

,即

解得:,

過(guò)點(diǎn)軸于

,

,

①當(dāng)時(shí),

,

∴點(diǎn)

設(shè)直線的解析式為,

,解得,

∴直線的解析式為

聯(lián)立,解得:(舍去),,

∴點(diǎn)

②當(dāng)時(shí),

,

∴點(diǎn)

設(shè)直線的解析式為

,解得,

∴直線的解析式為,

聯(lián)立,解得(舍去),,

點(diǎn),

綜上所述,存在點(diǎn),使以、為頂點(diǎn)的三角形與相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工人師傅用一塊長(zhǎng)為10dm,寬為6dm的矩形鐵皮制作一個(gè)無(wú)蓋的長(zhǎng)方體容器,需要將四角各裁掉一個(gè)正方形.(厚度不計(jì))

(1)在圖中畫出裁剪示意圖,用實(shí)線表示裁剪線,虛線表示折痕;并求長(zhǎng)方體底面面積為12dm2時(shí),裁掉的正方形邊長(zhǎng)多大?

(2)若要求制作的長(zhǎng)方體的底面長(zhǎng)不大于底面寬的五倍,并將容器進(jìn)行防銹處理,側(cè)面每平方分米的費(fèi)用為0.5元,底面每平方分米的費(fèi)用為2元,裁掉的正方形邊長(zhǎng)多大時(shí),總費(fèi)用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c的對(duì)稱軸為直線x=﹣,與x軸交于點(diǎn)A和點(diǎn)B1,0),與y軸交于點(diǎn)C,點(diǎn)D為線段AC的中點(diǎn),直線BD與拋物線交于另一點(diǎn)E,與y軸交于點(diǎn)F

1)求拋物線的解析式;

2)點(diǎn)P是直線BE上方拋物線上一動(dòng)點(diǎn),連接PD、PF,當(dāng)PDF的面積最大時(shí),在線段BE上找一點(diǎn)G,使得PGEG的值最小,求出PGEG的最小值.

3)如圖2,點(diǎn)M為拋物線上一點(diǎn),點(diǎn)N在拋物線的對(duì)稱軸上,點(diǎn)K為平面內(nèi)一點(diǎn),當(dāng)以A、M、N、K為頂點(diǎn)的四邊形是正方形時(shí),請(qǐng)求出點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,CDBC4AB1,EBC中點(diǎn),∠AED120°,則AD的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖RtABC中,∠ACB90°,∠B30°,AC1,且AC在直線l上,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到①,可得到點(diǎn)P1,此時(shí)AP12;將位置①的三角形繞點(diǎn)P1順時(shí)針旋轉(zhuǎn)到位置②,可得到點(diǎn)P2,此時(shí)AP22+;將位置②的三角形繞點(diǎn)P2順時(shí)針旋轉(zhuǎn)到位置③,可得到點(diǎn)P3,此時(shí)AP33+;按此規(guī)律繼續(xù)旋轉(zhuǎn),直到點(diǎn)P2020為止,則AP2020等于_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某民俗旅游村為接待游客住宿需要,開(kāi)設(shè)了有100張床位的旅館.當(dāng)每張床位每天收費(fèi)100元時(shí),床位可全部租出.若每張床位每天收費(fèi)提高20元,則相應(yīng)地減少了10張床位租出.如果每張床位每天以20元為單位提高收費(fèi),為使租出的床位少且租金高,那么每張床位每天最合適的收費(fèi)是(  )

A. 140 B. 150 C. 160 D. 180

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn),點(diǎn),點(diǎn)在函數(shù)的圖象上, 都是等腰直角三角形,斜邊都在軸上(是大于或等于2的正數(shù)數(shù)),則__________.(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)軸上.

1)若點(diǎn)是拋物線最低點(diǎn),且落在軸正半軸上,直接寫出的取值范圍;

2,是拋物線上兩點(diǎn),若,則;若,則,且當(dāng)的絕對(duì)值為4時(shí),為等腰直角三角形(其中).

①求拋物線的解析式;

②設(shè)中點(diǎn)為,若,求點(diǎn)縱坐標(biāo)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)直線l1yx+1x軸交于點(diǎn)A,直線l2y=﹣x+3x軸交于點(diǎn)B,l1l2交于點(diǎn)C,直線l3過(guò)線段AB的中點(diǎn)和點(diǎn)C,求直線l3的解析式;

2)已知平面直角坐標(biāo)系中,直線l經(jīng)過(guò)點(diǎn)P21)且與雙曲線y交于A、B不同兩點(diǎn),問(wèn)是否存在這樣的直線l,使得點(diǎn)P恰好為線段AB的中點(diǎn),若存在,求出直線l的解析式,若不存在,請(qǐng)說(shuō)明理由;

3)若Ax1y1)、Bx2y2)是拋物線y4x2上的不同兩點(diǎn)(y1≠y2),線段AB的垂直平分線與y軸交于點(diǎn)P,與線段AB交于點(diǎn)Mxm,ym),則稱線段AB為點(diǎn)P的一條相關(guān)弦,若點(diǎn)P的坐標(biāo)為(0a)時(shí)(a為常數(shù)),證明點(diǎn)P相關(guān)弦中點(diǎn)M的縱坐標(biāo)相同.

查看答案和解析>>

同步練習(xí)冊(cè)答案