作業(yè)寶如圖,O是AB的中點,要使通過角角邊(AAS)來判定△OAC≌△OBD需要添加一個條件,下列條件正確的是


  1. A.
    ∠A=∠B
  2. B.
    AC=BD
  3. C.
    ∠C=∠D
  4. D.
    CO=DO
C
分析:添加∠C=∠D,根據(jù)O是AB的中點,可得AO=BO,再加上對頂角∠AOC=∠BOD可利用AAS證明△OAC≌△OBD.
解答:添加∠C=∠D,
∵O是AB的中點,
∴AO=BO,
在△ACO和△BDO中,

∴△OAC≌△OBD(AAS),
故選:C.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,M是AB的中點,AB=
23
BC,N是BD的中點,且BC=2CD,如果AB=2cm,求AD、AN的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,O是AB的中點,∠D=∠C,∠DOA=∠COB,求證:AC=BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•房山區(qū)一模)已知:如圖,M是AB的中點,以AM為直徑的⊙O與BP相切于點N,OP∥MN.
(1)求證:直線PA與⊙O相切;
(2)求tan∠AMN的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C是AB的中點,D是CB的中點,若AB=10cm,則CD=
2.5
2.5
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,C是AB的中點,D是BC的中點,則CD的長等于( 。
A、CD=
1
4
AB
B、CD=AD-BD
C、CD=
1
2
(AB-BD)
D、CD=
1
2
(AC-BD)

查看答案和解析>>

同步練習冊答案