【題目】如圖,有A、B、C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )

A.在AC,BC兩邊高線的交點處

B.在AC,BC兩邊中線的交點處

C.在AC,BC兩邊垂直平分線的交點處

D.在A,B兩內(nèi)角平分線的交點處

【答案】C.

【解析】

試題分析:要求到三小區(qū)的距離相等,首先思考到A小區(qū)、B小區(qū)距離相等,根據(jù)線段垂直平分線定理的逆定理知滿足條件的點在線段AB的垂直平分線上,同理到B小區(qū)、C小區(qū)的距離相等的點在線段BC的垂直平分線上,于是到三個小區(qū)的距離相等的點應(yīng)是其交點,答案可得.

解:根據(jù)線段的垂直平分線的性質(zhì):線段的垂直平分線上的點到線段的兩個端點的距離相等.

則超市應(yīng)建在AC,BC兩邊垂直平分線的交點處.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩條互相平行的河岸,在河岸一邊測得AB為20米,在另一邊測得CD為70米,用測角器測得ACD=30°,測得BDC=45°,求兩條河岸之間的距離.(≈1.7,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】能夠?qū)⒁粋三角形的面積平分的線段是( )

A. 一邊上的高線 B. 一個內(nèi)角的角平分線 C. 一邊上的中線 D. 一邊上的中垂線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( ).

A.3x2+4x2=7x4 B.2x33x3=6x3

C.x6÷x3=x2 D.(x24=x8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生關(guān)注熱點新聞的情況,“兩會”期間,小明對班級同學(xué)一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看3次的人數(shù)沒有標(biāo)出).根據(jù)上述信息,解答下列各題:

(1)該班級女生人數(shù)是 ;女生收看“兩會”新聞次數(shù)的眾數(shù)是 ;中位數(shù)是

(2)求女生收看次數(shù)的平均數(shù).

(3)為進一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明計算出女生收看“兩會”新聞次數(shù)的方差為,男生收看“兩會”新聞次數(shù)的方差為2,請比較該班級男、女生收看“兩會”新聞次數(shù)的波動大。

(4)對于某個群體,我們把一周內(nèi)收看某熱點新聞次數(shù)不低于3次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對某熱點新聞的“關(guān)注指數(shù)”,如果該班級男生對“兩會”新聞的“關(guān)注指數(shù)”比女生低5%,試求該班級男生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式能用平方差公式計算的是( )

A. (2x+y)(2y+x) B. (x+1)(-x﹣1) C. (-x﹣y)(-x+y) D. (3x-y)(-3x+y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AB為O的直徑,C為O上一點,作ADCD,垂足為D.

(1)若直線CD與O相切于點C,求證:ADC∽△ACB;

(2)如果把直線CD向下平行移動,如圖2,直線CD交O于C、G兩點,若題目中的其他條件不變,tanDAC=,AB=10,求圓心O到GB的距離OH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從圖示的二次函數(shù)y=ax2+bx+c的圖象中,觀察得出了下面4條信息:

①abc>0;②a﹣b+c>0;③2a﹣3b=0;④c﹣4b>0.你認(rèn)為其中正確信息是 (填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD和菱形ECGF的邊長分別為2和3,A=120°,則圖中陰影部分的面積是( )

A. B.2 C.3 D.

查看答案和解析>>

同步練習(xí)冊答案