如圖:在半徑為1的圓中,弦CD垂直平分AB,則CD=   
【答案】分析:由弦CD垂直平分AB,根據(jù)垂直平分非直徑的弦的直線過圓心,即可得弦CD是直徑,又由圓的半徑為1,即可求得CD的長.
解答:解:∵弦CD垂直平分AB,
∴弦CD是直徑,
∵圓的半徑為1,
∴CD=2.
故答案為:2.
點評:此題考查了垂徑定理的知識.此題比較簡單,解題的關鍵是掌握垂直平分非直徑的弦的直線過圓心定理的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓中作一內接△ABC,使BC邊上的高AD=h(定值),這樣的三角形可作出無數(shù)個,但AB•AC為定值,其值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在半徑為R的圓內作一個內接正方形,然后作這個正方形的內切圓,又在這個內切圓中作內接正方形,依此作到第n個內切圓,它的半徑是( 。
A、(
2
2
)
n
R
B、(
1
2
)
n
R
C、(
1
2
)
n-1
R
D、(
2
2
)
n-1
R

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為6cm的圓中,弦AB長6
3
cm,試求弦AB所對的圓周角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為R的圓內作一個內接正方形,然后作這個正方形的內切圓,又在這個內切圓中作內接正方形,依此作到第n個內切圓,它的半徑是
2
2
nR
2
2
nR

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在半徑為1的圓中,圓心角為120°的扇形AOB的面積等于
π
3
π
3
(結果保留π).

查看答案和解析>>

同步練習冊答案