如圖,CD是⊙O的直徑,以D為圓心的圓與⊙O交于A、B兩點(diǎn),AB交CD于點(diǎn)E,CD交⊙D于P,已知PC=6,PE:ED=2:1,則AB的長為( 。
A.6
2
B.4
2
C.2
2
D.
2

延長PD交⊙D于F.
設(shè)PE=2x,DE=x.
根據(jù)相交弦定理,得:
CE×ED=AE×BE=PE×EF,
(6+2x)×x=2x×4x,
解得x=1.
所以AE=BE=2
2
,
所以AB=4
2

故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

以平面直角坐標(biāo)系中的兩點(diǎn)O1(0,3)和O2(4,0)為圓心,以8和3為半徑的兩圓的位置關(guān)系是( 。
A.內(nèi)切B.外切C.相離D.相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,相等兩圓交于A、B兩點(diǎn),過B任作一直線交兩圓于M、N,過M、N各引所在圓的切線相交于C,則四邊形AMCN有下面關(guān)系成立( 。
A.有內(nèi)切圓無外接圓
B.有外接圓無內(nèi)切圓
C.既有內(nèi)切圓,也有外接圓
D.以上情況都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙O1與⊙O2相交于A,B兩點(diǎn),圓心O1在⊙O2上,過B點(diǎn)作兩圓的割線CD,射線DO1
AC于E點(diǎn).求證:DE⊥AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),AB是半徑為R的⊙O的一條弦,點(diǎn)P是⊙O上任意一點(diǎn)(與A、B不重合)若R=2,AB=2
3

(1)若點(diǎn)P在⊙O優(yōu)弧AB上,AP、BP分別與以AB為直徑的圓交于C、D點(diǎn)
①請利用圖(1)求∠APB的度數(shù).
②請利用圖(2)求CD的長.
(2)若點(diǎn)P是⊙O劣弧AB上一點(diǎn),如圖(3)AP、BP的延長線分別交以AB為直徑的圓于C、D,你還能求出CD的長嗎?若能,請求出CD的長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在同一平面上有兩個(gè)大小相同的圓,其中⊙O1固定不動,⊙O2在其外圍相切滾動一周,則⊙O2自轉(zhuǎn)(  )周.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD的邊長是6,分別以A,D為圓心,6為半徑在正方形內(nèi)作弧,圓O與AB,弧BD,弧AC都相切,求圓O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為
2
-1
,直線l:y=-x-
2
與坐標(biāo)軸分別交于A、C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1),⊙B與x軸相切于點(diǎn)M.
(1)求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);
(2)⊙B以每秒1個(gè)單位長度的速度沿x軸負(fù)方向平移,同時(shí),若直線l繞點(diǎn)A順時(shí)針勻速旋轉(zhuǎn),當(dāng)⊙B第一次與⊙O相切時(shí),直線l也恰好與⊙B第一次相切,見圖(2)求B1的坐標(biāo)以及直線AC繞點(diǎn)A每秒旋轉(zhuǎn)多少度?
(3)若直線l不動,⊙B沿x軸負(fù)方向平移過程中,能否與⊙O與直線l同時(shí)相切?若相切,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在半徑為R的圓中,內(nèi)接正方形與內(nèi)接正六邊形的邊長之比為______.

查看答案和解析>>

同步練習(xí)冊答案