【題目】我們定義:若點(diǎn)在某一個(gè)函數(shù)的圖象上,且點(diǎn)的橫縱坐標(biāo)相等,我們稱點(diǎn)為這個(gè)函數(shù)的“好點(diǎn)”.若關(guān)于的二次函數(shù)對(duì)于任意的常數(shù)恒有兩個(gè)“好點(diǎn)”,則的取值范圍為(

A.B.C.D.

【答案】B

【解析】

由“好點(diǎn)”A的橫、縱坐標(biāo)相等,可得x=y=ax2+tx-2ta0),△=t-12+8at0,整理得:t2+8a -2t+10,若不等式t2+8a -2t+10成立,則關(guān)于t的一元二次方程t2+8a -2t+1=0無(wú)解,根據(jù)△′=8a -22-40即可求解.

∵“好點(diǎn)”A的橫縱坐標(biāo)相等,

x=y=ax2+tx-2ta0),

ax2+t-1x-2t=0a0),

∴△=t-12+8at0,

整理得:t2+8a -2t+10,

不等式t2+8a -2t+10成立,

則關(guān)于t的一元二次方程t2+8a -2t+1=0無(wú)解,

即△′=2-8a2-40,

解得:0a

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx+ax軸交于點(diǎn)A4,0),與y軸交于點(diǎn)B,拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)A,B.點(diǎn)Mm0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M且垂直于x軸的直線分別交直線AB及拋物線于點(diǎn)P,N

1)填空:點(diǎn)B的坐標(biāo)為   ,拋物線的解析式為   ;

2)當(dāng)點(diǎn)M在線段OA上運(yùn)動(dòng)時(shí)(不與點(diǎn)OA重合),

①當(dāng)m為何值時(shí),線段PN最大值,并求出PN的最大值;②求出使△BPN為直角三角形時(shí)m的值;

3)若拋物線上有且只有三個(gè)點(diǎn)N到直線AB的距離是h,請(qǐng)直接寫(xiě)出此時(shí)由點(diǎn)O,BN,P構(gòu)成的四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)M,N的坐標(biāo)分別為(﹣2,3),(3,2),若拋物線y=ax2x+2a0)與線段MN有兩個(gè)不同的交點(diǎn),則a的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用長(zhǎng)為6m的鋁合金條制成字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計(jì)).

1)求出yx的函數(shù)關(guān)系式;

2)如何安排窗框的長(zhǎng)和寬,才能使得窗戶的透光面積最大?并求出此時(shí)的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB 為圓O的直徑PQ切圓OT , ACPQC ,交圓O D

1求證: AT 平分BAC ;

2 AD =2TC= ,求圓O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某童裝專賣(mài)店在銷(xiāo)售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷(xiāo)售價(jià)為120元時(shí),每天可售出20.為了增加利潤(rùn),減少庫(kù)存,商店決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么可多售出2.設(shè)每件童裝降價(jià).

1)降價(jià)后,每件盈利______元,每天可銷(xiāo)售______件;(用含的代數(shù)式填空);

2)每件童裝降價(jià)多少元時(shí),每天盈利1200元;

3)每件童裝降價(jià)多少元時(shí),每天可獲得最大盈利,最大盈利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖拋物線yax2+bx+c的圖象經(jīng)過(guò)(1,0),對(duì)稱軸x1,則下列三個(gè)結(jié)論:①abc0;②10a+3b+c0;③am2+bm+a≥0.正確的結(jié)論為_____(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+x+ca0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知點(diǎn)A的坐標(biāo)為(﹣10),點(diǎn)C的坐標(biāo)為(0,2).

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

3)點(diǎn)E是線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案