【題目】如圖,某小區(qū)內有一塊長、寬比為2∶1的矩形空地,計劃在該空地上修筑兩條寬均為2 m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312 m2,請求出原來大矩形空地的長和寬.
(1)請找出上述問題中的等量關系:_________________;
(2)若設大矩形空地的寬為xm,可列出的方程為_____________,方程的解為__________,原來大矩形空地的長和寬分別為_________.
科目:初中數學 來源: 題型:
【題目】小明、小華用方塊2、黑桃4、黑桃5、梅花5四張撲克牌玩游戲,他倆將撲克牌洗勻后,背面朝上放置在桌面上,小明先抽,小華后抽,抽出的牌不放回.
(1)若小明恰好抽到了黑桃4;
①請在方框中繪制這種情況的樹狀圖;
②求小華抽出的牌的牌面數字比4大的概率;
(2)小明、小華約定:只抽一次,若小明抽到牌的牌面數字比小華的大,則小明勝;反之,則小明負。你認為這個游戲是否公平?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀解題過程,回答問題.
如圖,OC在∠AOB內,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數.
解:過O點作射線OM,使點M,O,A在同一直線上.
因為∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中, 每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;
(2)以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,點P是直線l3上一動點
(1)如圖1,當點P在線段CD上運動時,∠PAC,∠APB,∠PBD之間存在什么數量關系?請你猜想結論并說明理由.
(2)當點P在C、D兩點的外側運動時(P點與點C、D不重合,如圖2和圖3),上述(1)中的結論是否還成立?若不成立,請直接寫出∠PAC,∠APB,∠PBD之間的數量關系,不必寫理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小紅參加學校組織的慶祝黨的十九大勝利召開知識競賽,答對最后兩道單選題就順利通關,第一道單選題有3個選項,第二道單選題有4個選項,可是小紅這兩道題都不會,不過競賽規(guī)則規(guī)定每位選手有兩次求助機會,使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項,主持人提醒小紅可以使用兩次“求助”.
(1)如果小紅兩次“求助”都在第一道題中使用,那么小紅通關的概率是 .
(2)如果小紅將每道題各用一次“求助”,請用樹狀圖或者列表來分析她順序通關的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖
① ∵
∴ ______// _____(______________________)
② ∵∠DAB+∠ABC=180°
∴ _____// _____(__________________)
③∵ AB // CD
∴∠_____+∠ABC=180°(___________________)
④∵ ______// ______
∴∠C=∠3(_______________________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的網格中,每個小正方形的邊長都為1.
(1)試作出直角坐標系,使點A的坐標為(2,-1);
(2)在(1)中建立的直角坐標系中描出點B(3,4),C(0,1),并求三角形ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,BC∥OA,∠B=∠A=100°,點E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列結論中正確的是___________:
①OB∥AC ②∠EOC=45°
③∠OCB:∠OFB=1:3 ④若∠OEB=∠OCA,則∠OCA=60°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com