已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點,CM的延長線交⊙O于點E,且EM>MC.連接DE,DE=
15

(1)求EM的長;
(2)求sin∠EOB的值.
如圖,(1)∵DC為⊙O的直徑,
∴DE⊥EC(1分)
∵DC=8,DE=
15

∴EC=
DC2-DE2

=
64-15
=7(2分)
設(shè)EM=x,由于M為OB的中點,
∴BM=2,AM=6,
由相交弦定理AM•MB=EM•CM,(3分)
即6×2=x(7-x),x2-7x+12=0
解這個方程,得x1=3,x2=4
∵EM>MC
∴EM=4;(5分)

(2)∵OE=EM=4
∴△OEM為等腰三角形
過E作EF⊥OM,垂足為F,則OF=
1
2
OM=1
∴EF=
OE2-OF2
=
16-1
=
15

∴sin∠EOB=
15
4
.(8分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:△ABC內(nèi)接于⊙O,AD⊥BC于D.若AB•AC=16,AD=3,則⊙O半徑是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD.
(1)P是
CAD
上一點(不與C,D重合),∠CPD與∠COB有何大小關(guān)系?試說明理由;
(2)點P′在
CD
上(不與C,D重合)時,∠CP′D與∠COB又有什么數(shù)量關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在⊙O中,直徑AB的長為10,弦AC的長為6,∠ACB的平分線交⊙O于點D,求BC和BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙C經(jīng)過原點且與兩坐標(biāo)軸分別交于點A與點B,點A的坐標(biāo)為(0,4),M是圓上一點,∠BMO=120°,圓心C的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,MN是⊙O的直徑,MN=2,點A在⊙O上,∠AMN=30°,B為弧AN的中點,P是直徑MN上一動點,則PA+PB的最小值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

△ABC為⊙O的內(nèi)接三角形,D為劣弧
AC
上的一點,若∠AOC=160°,則:
(1)∠ABC=______;
(2)∠ADC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,D是劣弧
AC
的中點,BD交AC于點E.
(1)求證:AD2=DE•DB;
(2)若BC=
5
2
,CD=
5
2
,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC是⊙O的內(nèi)接三角形,若∠ABC=70°,則∠OAC=( 。
A.20°B.35°C.130°D.140°

查看答案和解析>>

同步練習(xí)冊答案