已知拋物線上有四個點(diǎn)(-3,m),(4,8),(-6,n),(1,m),則n= .
【答案】
分析:根據(jù)縱坐標(biāo)相等判斷出(-3,m)和(1,m)關(guān)于對稱軸對稱,然后求出對稱軸的解析式,再判斷出(4,8)和(-6,n)也是關(guān)于對稱軸對稱的點(diǎn),從而得解.
解答:解:∵(-3,m)和(1,m)的縱坐標(biāo)相等,
∴拋物線的對稱軸為直線x=

=-1,
∵

=-1,
∴(4,8)和(-6,n)關(guān)于直線x=-1對稱,
∴n=8.
故答案為:8.
點(diǎn)評:本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo),利用縱坐標(biāo)相等的點(diǎn)關(guān)于對稱軸對稱并求出對稱軸是解題的關(guān)鍵.