【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(a,b),點(diǎn)P的“關(guān)聯(lián)點(diǎn)”P(pán)’的坐標(biāo)定義如下:當(dāng)時(shí),P’點(diǎn)坐標(biāo)為(b,a);當(dāng)時(shí),P’點(diǎn)坐標(biāo)為(-a,-b).
(1)寫(xiě)出A(5,3)的變換點(diǎn)坐標(biāo)_____,B(1,6)的變換點(diǎn)坐標(biāo)______,C(-2,4)的變換點(diǎn)坐標(biāo)_____;
(2)如果直線l:上所有點(diǎn)的關(guān)聯(lián)點(diǎn)組成一個(gè)新的圖形,記作圖形W,請(qǐng)畫(huà)出圖形W;
(3)在(2)的條件下,若直線y=kx-1(k≠0)與圖形W有兩個(gè)交點(diǎn),請(qǐng)直接寫(xiě)出k的取值范圍.
【答案】(1)A(3,5),B(-1,-6),C(2,-4);(2)見(jiàn)詳解;(3)或
【解析】
(1)根據(jù)A、B、C三點(diǎn)的橫、縱坐標(biāo)間的關(guān)系即可找出與之對(duì)應(yīng)的變換點(diǎn)坐標(biāo);
(2)根據(jù)直線DE的解析式,找出橫縱坐標(biāo)相等的點(diǎn)的坐標(biāo),根據(jù)變換點(diǎn)的定義,將直線DE上的點(diǎn)(2,2)左側(cè)(不包括該點(diǎn))的射線作關(guān)于原點(diǎn)對(duì)稱(chēng)的射線,再將直線DE的點(diǎn)(2,2)右側(cè)(包括該點(diǎn))作關(guān)于x=y對(duì)稱(chēng)的射線,由此即可得出圖形W;
(3)根據(jù)W的做法找出圖形W中兩段射線的解析式,分別令y=kx1(k≠0)與這兩段射線的交點(diǎn)的橫坐標(biāo)滿(mǎn)足射線中x的取值范圍,綜合在一起即可得出結(jié)論.
解:(1)∵5>3,1<6,-2<4,
∴A(3,5),B(-1,-6),C(2,-4);
(2)當(dāng)x=y時(shí),則有,解得x=y=2,∴將直線DE上的點(diǎn)(2,2)右側(cè)(包括該點(diǎn))的射線作關(guān)于x=y對(duì)稱(chēng)的射線;再將直線DE上的點(diǎn)(2,2)左側(cè)(不包括該點(diǎn))作關(guān)于原點(diǎn)對(duì)稱(chēng)的射線,由此即可得出圖形W;
(3)經(jīng)過(guò)變換得到的兩條射線方程為:
y=-2x+6 (x≤2)
(x>-2)
令-2x+6=kx-1(k≠0),則有且k≠0,k≠-2
解得:或k<-2
令(k≠0),則有且k≠0,2k+1≠0
解得:或
綜上可知: 若直線y=kx-1(k≠0)與圖形W有兩個(gè)交點(diǎn),k的取值范圍為:或k<-2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系,直線y=2x+2交x軸于A,交y軸于 D,
(1)直接寫(xiě)直線y=2x+2與坐標(biāo)軸所圍成的圖形的面積
(2)以AD為邊作正方形ABCD,連接AD,P是線段BD上(不與B,D重合)的一點(diǎn),在BD上截取PG=,過(guò)G作GF垂直BD,交BC于F,連接AP.
問(wèn):AP與PF有怎樣的數(shù)量關(guān)系和位置關(guān)系?并說(shuō)明理由;
(3)在(2)中的正方形中,若∠PAG=45°,試判斷線段PD,PG,BG之間有何關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一輛汽車(chē)在直線形的公路AB上由A向B行駛,M,N分別是位于公路AB兩側(cè)的村莊.
(1)設(shè)汽車(chē)行駛到公路AB上點(diǎn)P位置時(shí),距離村莊M最近;行駛到點(diǎn)Q位置時(shí),距離村莊N最近.請(qǐng)?jiān)趫D中的公路AB上分別畫(huà)出點(diǎn)P,Q的位置(保留畫(huà)圖痕跡).
(2)當(dāng)汽車(chē)從A出發(fā)向B行駛時(shí),在公路AB的哪一段路上距離M,N兩村莊都越來(lái)越近?在哪一段路上距離村莊N越來(lái)越近,而離村莊M卻越來(lái)越遠(yuǎn)?(分別用文字表述你的結(jié)論,不必證明).
(3)到在公路AB上是否存在這樣一點(diǎn)H,使汽車(chē)行駛到該點(diǎn)時(shí),與村莊M,N的距離相等?如果存在,請(qǐng)?jiān)趫D中的AB上畫(huà)出這一點(diǎn)(保留畫(huà)圖痕跡,不必證明);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某隧道口的橫截面是拋物線形,已知路寬AB為6米,最高點(diǎn)離地面的距離OC為5米.以最高點(diǎn)O為坐標(biāo)原點(diǎn),拋物線的對(duì)稱(chēng)軸為y軸,1米為數(shù)軸的單位長(zhǎng)度,建立平面直角坐標(biāo)系,求:(1)以這一部分拋物線為圖象的函數(shù)解析式,并寫(xiě)出x的取值范圍;(2)有一輛寬2.8米,高1米的農(nóng)用貨車(chē)(貨物最高處與地面AB的距離)能否通過(guò)此隧道?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD、AE分別是△ABC的角平分線和高線.
(1) 若∠B=50°,∠C=60°,求∠DAE的度數(shù);
(2)若∠C >∠B,猜想∠DAE與∠C-∠B之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.
(1)該店每天賣(mài)出這兩種菜品共多少份?
(2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣(mài)時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣(mài)1份;B種菜品售價(jià)每提高0.5元就少賣(mài)1份,如果這兩種菜品每天銷(xiāo)售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫(huà)出△A1B1C的圖形.
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請(qǐng)畫(huà)出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2-5ax+4a與x軸相交于點(diǎn)A,B,且過(guò)點(diǎn)C(5,4).
(1)求a的值和該拋物線頂點(diǎn)P的坐標(biāo);
(2)請(qǐng)你設(shè)計(jì)一種平移的方法,使平移后拋物線的頂點(diǎn)落在第二象限,并寫(xiě)出平移后拋物線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交軸、軸于點(diǎn)C、D,且S△PBD=4, .
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫(xiě)出當(dāng)時(shí),一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com