【題目】如圖,四邊形ABCD為圓內(nèi)接四邊形,A為弧BD中點(diǎn),連接對(duì)角線AC,E在AC上,且AE=AB求證:
(1)∠CBE=∠CAD;
(2)AC2=BCCD+AB2.
【答案】(1)證明見解析 (2)證明見解析
【解析】
(1)連接BD交AC于F,根據(jù)圓的性質(zhì)得:∠ABD=∠ACB=∠ACD,由等腰三角形的性質(zhì)得:∠ABE=∠AEB,根據(jù)外角的性質(zhì)得:∠CBE=∠DBE,從而得結(jié)論;
(2)先根據(jù)兩角相等兩三角形相似證明:△ACD∽△BCF和△ABF∽△ACB,列比例式后,化為乘積式后相加可得結(jié)論.
證明:(1)連接BD交AC于F,
∵A為弧BD中點(diǎn),
∴弧AB=弧AD,
∴∠ABD=∠ACB=∠ACD,
∵AB=AE,
∴∠ABE=∠AEB,
∵∠AEB=∠ACB+∠CBE,∠ABE=∠ABD+∠DBE,
∴∠CBE=∠DBE,
∵∠CAD=∠CBD=2∠CBE,
∴∠CBE=∠CAD,
(2)∵∠DBC=∠CAD,∠ACB=∠ACD,
∴△ACD∽△BCF,
∴ ,
∴BCCD=ACCF①,
∵∠ABF=∠ACB,∠BAF=∠CAB,
∴△ABF∽△ACB,
∴,
∴AB2=ACAF②,
①+②得:AB2+BCCD=ACCF+ACAF=AC(CF+AF),
∴AC2=BCCD+AB2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為37°的自動(dòng)扶梯,平臺(tái)BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈,tan37°≈,sin65°≈,tan65°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊長為21m、寬為10m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間及周邊留有寬度相等的人行通道,且人行通道的寬度不能超過3米.
(1)如果兩塊綠地的面積之和為90m2,求人行通道的寬度;
(2)能否改變?nèi)诵型ǖ赖膶挾,使得每塊綠地的寬與長之比等于3:5,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正△ABC的頂點(diǎn)B(﹣3,0)、C(﹣1,0),過坐標(biāo)原點(diǎn)O的一條直線分別與邊AB、AC交于點(diǎn)M、N.若OM=2ON,則點(diǎn)N的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,水壩的橫斷面是梯形,背水坡AB的坡角∠BAD=,坡長AB=,為加強(qiáng)水壩強(qiáng)度,將壩底從A處向后水平延伸到F處,使新的背水坡的坡角∠F=45,求AF的長度(結(jié)果精確到1米,參考數(shù)據(jù): ,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我漁政310船在南海海面上沿正東方向勻速航行,在A地觀測到我漁船C在東北方向上的我國某傳統(tǒng)漁場.若漁政310船航向不變,航行半小時(shí)后到達(dá)B處,此時(shí)觀測到我漁船C在北偏東30°方向上.問漁政310船再航行多久,離我漁船C的距離最近?(假設(shè)我漁船C捕魚時(shí)移動(dòng)距離忽略不計(jì),結(jié)果不取近似值.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,點(diǎn)E是菱形ABCD內(nèi)一點(diǎn),連結(jié)CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BE,DF,若∠E=86°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛用如圖所示的兩個(gè)轉(zhuǎn)盤做配紫色游戲,游戲規(guī)則是:分別旋轉(zhuǎn)兩個(gè)轉(zhuǎn)盤,若其中一個(gè)轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個(gè)轉(zhuǎn)出了藍(lán)色則可以配成紫色.此時(shí)小剛得1分,否則小明得1分.這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請說明理由.若你認(rèn)為不公平,如何修改規(guī)則才能使游戲?qū)﹄p方公平?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com