如圖,在平行四邊形ABCD的紙片中,AC⊥AB,AC與BD相交于O,將△ABC沿對(duì)角線AC翻轉(zhuǎn)180°,得到△AB′C.
(1)求證:以A、C、D、B′為頂點(diǎn)的四邊形是矩形;
(2)若四邊形ABCD的面積S=12cm,求翻轉(zhuǎn)后紙片部分的面積,即S△ACB

【答案】分析:(1)可利用矩形的概念“有一個(gè)角是直角的平行四邊形為矩形”進(jìn)行解答;
(2)因?yàn)樵谄叫兴倪呅沃,?duì)角線將平行四邊形分成面積相等的兩部分,所以所求面積=6.
解答:(1)證明:連接B′D,
∵在?ABCD中,AB=CD,AB∥CD,△ABC沿對(duì)角線AC翻轉(zhuǎn)180°,
∴AB′=CD,∠BAC=∠B′AC,
又∵AC⊥CD,
∴∠BAC=∠B′AC=90°,
∴B,A,B′共線,
∴AB′∥CD,
∴四邊形ACDB′為平行四邊形,
∵∠B′AC=90°
∴?ACDB′為矩形;

(2)解:∵四邊形是ABCD是平行四邊形,
∴AB=CD,BC=AD,AC=CA,
∴△ABC≌△CDA,
∴S△ACB=S?ABCD=×12=6.
點(diǎn)評(píng):此題主要考查了矩形的判定以及全等三角形的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,在平行四邊形ABCD中,EF∥AD,GH∥AB,EF、GH相交于點(diǎn)O,則圖中共有
9
個(gè)平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F,證明:四邊形DFBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.點(diǎn)M是邊AD上一點(diǎn),且DM:AD=1:3.點(diǎn)E、F分別從A、C同時(shí)出發(fā),以1厘米/秒的速度分別沿AB、CB向點(diǎn)B運(yùn)動(dòng)(當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E隨之停止運(yùn)動(dòng)),EM、CD精英家教網(wǎng)的延長(zhǎng)線交于點(diǎn)P,F(xiàn)P交AD于點(diǎn)Q.設(shè)運(yùn)動(dòng)時(shí)間為x秒,線段PC的長(zhǎng)為y厘米.
(1)求y與x之間函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),PF⊥AD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=2
2
,AO=
3
OB=
5
,則下列結(jié)論中不正確的是( 。
A、AC⊥BD
B、四邊形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•同安區(qū)一模)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長(zhǎng)為
4cm
4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案