【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.
(1)求證:BE∥DF;
(2)若∠ABC=56°,求∠ADF的大。
【答案】(1)證明見解析;(2)∠ADF=62°.
【解析】
(1)根據(jù)四邊形的內(nèi)角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根據(jù)角平分線定義、等角的余角相等易證明和BE與DF兩條直線有關的一對同位角相等,從而證明兩條直線平行;
(2)根據(jù)四邊形的內(nèi)角和和角平分線的定義即可得到結論.
(1)證明:∵∠A=∠C=90°,
∴∠ABC+∠ADC=180°,
∵BE平分∠ABC,DF平分∠ADC,
∴∠1=∠2=∠ABC,∠3=∠4=∠ADC,
∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°,
又∠1+∠AEB=90°,
∴∠3=∠AEB,
∴BE∥DF;
(2)解:∵∠ABC=56°,
∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=124°,
∵DF平分∠CDA,
∴∠ADF=∠ADC=62°.
科目:初中數(shù)學 來源: 題型:
【題目】已知正比例函數(shù)y=k1x(k1≠0)與反比例函數(shù)的圖象交于A、B兩點,點A的坐標為(2,1).
(1)求正比例函數(shù)、反比例函數(shù)的表達式;
(2)求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,BM是∠ABC的平分線,交CD于點M,且DM=2,平行四邊形ABCD的周長是14,則BC的長等于( )
A. 2B. 2.5C. 3D. 3.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校準備購進一批籃球和排球,買2個籃球和3個排球共需230元,買3個籃球和2個排球共需290元。
(1)求一個籃球和一個排球的售價各是多少元?
(2 )學校欲購進籃球和排球共120個,且排球的數(shù)量不多于籃球的數(shù)量的2倍少10,求出最多購買排球多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】萬州某企業(yè)捐資購買了一批重120噸的物資支援某貧困鄉(xiāng)鎮(zhèn),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下(假設每輛車均滿載):甲載重5噸,運費400元/車,乙載重8噸,運費500元/車,丙載重10噸,運費600元/車,該公司計劃用甲、乙、丙三種車型同時參與運送并完成任務,已知它們的總輛數(shù)為15輛,要使費用最省,所使用的甲、乙、丙三種車型的輛數(shù)分別是______。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖以△ABC的一邊AB為直徑作⊙O,⊙O與BC邊的交點D恰好為BC的中點,過點D作⊙O的切線交AC邊于點F.
(1)求證:DF⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一批小家電,平均每天可售出20臺,每臺盈利40元.為了去庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)查發(fā)現(xiàn),在一定范圍內(nèi),小家電的單價每降5元,商場平均每天可多售出10臺.
(1)若將這批小家電的單價降低x元,則每天的銷售量是______臺(用含x的代數(shù)式表示);
(2)如果商場通過銷售這批小家電每天要盈利1250元,那么單價應降多少元?
(3)若這批小家電的單價有三種降價方式:降價10元、降價20元、降價30元,如果你是商場經(jīng)理,你準備采取哪種降價方式?說說理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過70千米小時,如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路面對車速檢測儀A的正前方60米處的C點,過了5秒后,測得小汽車所在的B點與車速檢測儀A之間的距離為100米.
求BC間的距離;這輛小汽車超速了嗎?請說明理由.
【答案】這輛小汽車沒有超速.
【解析】
(1)根據(jù)勾股定理求出BC的長;
(2)直接求出小汽車的時速,進行比較得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB為斜邊,根據(jù)勾股定理,得BC=80 m.
(2)這輛小汽車沒有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴這輛小汽車沒有超速.
【點睛】
考查勾股定理的應用,熟練掌握勾股定理是解題的關鍵.
【題型】解答題
【結束】
19
【題目】已知:如圖,線段AC和BD相交于點G,連接AB,CD,E是CD上一點,F是DG上一點,,且.
求證:;若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)設計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關系式;
(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內(nèi)?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com