【題目】如圖,長(zhǎng)方形ABCD中,AB=4,AD=2,點(diǎn)Q與點(diǎn)P同時(shí)從點(diǎn)A出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿ADCB的方向運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿ABCD的方向運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們同時(shí)停止運(yùn)動(dòng)。設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒),在整個(gè)運(yùn)動(dòng)過(guò)程中,求解下面問(wèn)題:

1)當(dāng)P、Q相遇時(shí),求出的值(列方程解決問(wèn)題);

2)當(dāng)△APQ的面積為時(shí),此時(shí)t的值是_________;

3)當(dāng)△APQ為直角三角形時(shí),直接寫(xiě)出相應(yīng)的的值或取值范圍.

【答案】1 t=3;(21;(3t=20<t≤.

【解析】

1)設(shè)t秒后相遇,根據(jù)相遇時(shí)共走了12個(gè)單位的路程列方程求解;

2)分兩種情形分別構(gòu)建方程即可解決問(wèn)題;

3)由題意可得當(dāng)0x≤△AQM是直角三角形,當(dāng) x2時(shí)△AQM是銳角三角形,當(dāng)x=2時(shí),△AQM是直角三角形,當(dāng)2x3時(shí)△AQM是鈍角三角形.

解:(1)設(shè)t秒后相遇,由題意得

t+3t=12,

t=3.

2)由題意:當(dāng)P、Q分別在ADAB上時(shí),

t3t=,解得t=-1(舍棄),

當(dāng)P、Q都在CD上時(shí),

×12-4t×2=,解得t=,

綜上所述,t=1時(shí),△APQ的面積為

3)當(dāng)點(diǎn)PAB上時(shí),點(diǎn)QAD上時(shí),此時(shí)△APQ為直角三角形,則0x≤;

當(dāng)點(diǎn)PBC上時(shí),點(diǎn)QAD上時(shí),此時(shí)△APQ為銳角三角形,則x2

當(dāng)點(diǎn)PC處,此時(shí)點(diǎn)QD處,此時(shí)△APQ為直角三角形,則x=2時(shí);

當(dāng)點(diǎn)PCD上時(shí),點(diǎn)QDC上時(shí),此時(shí)△APQ為鈍角三角形,則2x3

當(dāng)△APQ為直角三角形時(shí),相應(yīng)的t的值或取值范圍:0x≤x=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某造紙廠為了保護(hù)環(huán)境,準(zhǔn)備購(gòu)買AB兩種型號(hào)的污水處理設(shè)備共6臺(tái),用于同時(shí)治理不同成分的污水,若購(gòu)買A2臺(tái),B3臺(tái)需54萬(wàn)元,購(gòu)買A4臺(tái)、B2臺(tái)需68萬(wàn)元.

1)求出A型、B型污水處理設(shè)備的單價(jià);

2)經(jīng)核實(shí),一臺(tái)A型設(shè)備一個(gè)月可處理污水220噸,一臺(tái)B型設(shè)備一個(gè)月可處理污水180噸,如果該企業(yè)每月的污水處理量不低于1150噸,問(wèn)共有幾種購(gòu)買方案?請(qǐng)你為該企業(yè)設(shè)計(jì)一種最省錢的購(gòu)買方案并求此時(shí)的購(gòu)買費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小亮和小芳都想?yún)⒓訉W(xué)校杜團(tuán)組織的暑假實(shí)踐活動(dòng),但只有一個(gè)名額,小亮提議用如下的辦法決定誰(shuí)去等加活動(dòng):將一個(gè)轉(zhuǎn)盤(pán)9等分,分別標(biāo)上1至9九個(gè)號(hào)碼,隨意轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),

若轉(zhuǎn)到2的倍數(shù),小亮去參加活動(dòng);轉(zhuǎn)到3的倍數(shù),小芳去參加活動(dòng);轉(zhuǎn)到其它號(hào)碼則重新特動(dòng)轉(zhuǎn)盤(pán).

(1)轉(zhuǎn)盤(pán)轉(zhuǎn)到2的倍數(shù)的概率是多少?

(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(1,4)、B(2,a)在函數(shù)y=(x>0)的圖象上,直線ABx軸相交于點(diǎn)C,ADx軸于點(diǎn)D.

(1)m=  ;

(2)求點(diǎn)C的坐標(biāo);

(3)在x軸上是否存在點(diǎn)E,使以A、B、E為頂點(diǎn)的三角形與ACD相似?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、b、c的三邊,且滿足,試判斷的形狀.

閱讀下面解題過(guò)程:

解:由得:

Rt△.④

試問(wèn):以上解題過(guò)程是否正確:_________

若不正確,請(qǐng)指出錯(cuò)在哪步?______(填代號(hào))

錯(cuò)誤原因是______________________

本題的結(jié)論應(yīng)為_______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《山西省新能源汽車產(chǎn)業(yè)2018年行動(dòng)計(jì)劃》指出,2018年全省新能源汽車產(chǎn)能將達(dá)到30萬(wàn)輛,按照十三五規(guī)劃,到2020年,全省新能源汽車產(chǎn)能將達(dá)到41萬(wàn)輛,若設(shè)這兩年全省新能源汽車產(chǎn)能的平均增長(zhǎng)率為,則根據(jù)題意可列出方程是()

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】百貨商店銷售某種冰箱,每臺(tái)進(jìn)價(jià)2500元。市場(chǎng)調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8臺(tái);每臺(tái)售價(jià)每降低10元時(shí),平均每天能多售出1臺(tái)。(銷售利潤(rùn)=銷售價(jià)進(jìn)價(jià))

(1)如果設(shè)每臺(tái)冰箱降價(jià)x元,那么每臺(tái)冰箱的銷售利潤(rùn)為 元,平均每天可銷售冰箱 臺(tái);(用含x的代數(shù)式表示)

(2)商店想要使這種冰箱的銷售利潤(rùn)平均每天達(dá)到5600元,且盡可能地清空冰箱庫(kù)存,每臺(tái)冰箱的定價(jià)應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的三邊AB、BCCA長(zhǎng)分別是20、3040,其三條角平分線將△ABC分為三個(gè)三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P,試分別根據(jù)下列條件,求出點(diǎn)P的坐標(biāo):

(1)點(diǎn)P軸上;

(2)點(diǎn)P的縱坐標(biāo)比橫坐標(biāo)大3;

(3)點(diǎn)P到兩坐標(biāo)的距離相等;

(4)點(diǎn)P在過(guò)A(2,-5)點(diǎn),且與軸平行的直線上。

查看答案和解析>>

同步練習(xí)冊(cè)答案