已知:如圖,點(diǎn)O在AC上,⊙O過(guò)B,C兩點(diǎn),交AC于點(diǎn)D,AB與⊙O相切.
求證:∠ABD=∠C.

證明:∵CD是⊙O的直徑,
∴∠1+∠2=90°,
∵AB是⊙O的切線,
∴∠1+∠ABD=90°,
∴∠ABD=∠2,
∵OC=OB,
∴∠2=∠C.
∴∠ABD=∠C.
分析:根據(jù)切線的性質(zhì)和圓周角定理求出∠DBC和∠OBA=90°,求出∠ABD=∠2,根據(jù)等腰三角形性質(zhì)求出∠2=∠C,即可得出答案.
點(diǎn)評(píng):本題考查了切線性質(zhì),圓周角定理,等腰三角形性質(zhì)等知識(shí)點(diǎn),解此題的關(guān)鍵是求出∠2=∠ABD,題目比較好,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•南京)已知:如圖,點(diǎn)P在∠AOB的邊OA上.
(1)作圖(保留作圖痕跡)
①作∠AOB的平分線OM;
②以P為頂點(diǎn),作∠APQ=∠AOB,PQ交OM于點(diǎn)C;
③過(guò)點(diǎn)C作CD⊥OB,垂足為點(diǎn)D.
(2)當(dāng)∠AOB=30°時(shí),求證:PC=2CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)C在BE上,AB∥ED,AB=CE,BC=ED.
求證:∠ACB=∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,點(diǎn)D在AB上,點(diǎn)E在AC上,BE和CD相交于點(diǎn)O,AB=AC,∠B=∠C.求證:BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,點(diǎn)F在AB上,點(diǎn)E在CD上,AE、DF分別交BC于H、G,∠A=∠D,∠FGB+∠EHG=180°,問(wèn)AB與CD有怎樣的位置關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖,點(diǎn)C在線段AB上,AC=18cm,BC=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn),求MN的長(zhǎng);
(2)把(1)中的“點(diǎn)C在線段AB上”改為“點(diǎn)C在直線AB上”,其它條件不變,則MN的長(zhǎng)是多少?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案