【題目】為響應潛江市創(chuàng)建全國文明城市號召,某單位不斷美化環(huán)境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長不超過18m,另外三邊由36m長的柵欄圍成.設矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).

1)求yx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

2)若矩形空地的面積為160m2,求x的值.

【答案】(1)y= -2x2+36x9≤x18);(2)10.

【解析】

1)根據(jù)矩形的面積公式計算即可;
2)構建方程即可解決問題,注意檢驗是否符合題意

1y=x36-2x=-2x2+36x9≤x18

2)由題意:-2x2+36x=160,

解得x=108

x=8時,36-16=2018,不符合題意,

x的值為10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】整數(shù)a滿足下列兩個條件,使不等式﹣2≤a+1恰好只有3個整數(shù)解,使得分式方程1的解為整數(shù),則所有滿足條件的a的和為(  )

A. 2B. 3C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【提出問題】

1)如圖1,在等邊ABC中,點MBC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等邊AMN,連結(jié)CN.求證:ABC=ACN

【類比探究】

2)如圖2,在等邊ABC中,點MBC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論ABC=ACN還成立嗎?請說明理由.

【拓展延伸】

3)如圖3,在等腰ABC中,BA=BC,點MBC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰AMN,使頂角AMN=ABC.連結(jié)CN.試探究ABCACN的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y1x22x,直線y2=-2xb相交于A,B兩點,其中點A的橫坐標為2.當x任取一值時,x對應的函數(shù)值分別為y1,y2,取m(|y1y2|y1y2).則

A. x<-2時,my2B. mx的增大而減。

C. m2時,x0D. m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一跨河橋,橋拱是圓弧形,跨度(AB)為16米,拱高(CD)為4米,求:

1)橋拱半徑.

2)若大雨過后,橋下河面寬度(EF)為12米,求水面漲高了多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在AD,DC上,且△BEF為等邊三角形,下列結(jié)論:

①DE=DF;②∠AEB=75°;③BE=DE;④AE+FC=EF.

其中正確的結(jié)論個數(shù)有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

1x23x20;(2x22x+20;(33xx2)=52x);(4x2﹣(2m+1x+m2+m0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一路燈距地面6.4米,身高1.6米的小方從距離燈的底部(點O5米的A處,沿OA所在的直線行走到點C時,人影長度增長3米,

求:(1)小方在A處時的影子AB的長;(2)小方行走的路程AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名自行車運動員同時從A地出發(fā)到B地,在直線公路上進行騎自行車訓練.如圖,反映了甲、乙兩名自行車運動員在公路上進行訓練時的行駛路程S(千米)與行駛時間t(小時)之間的關系,下列四種說法:①甲的速度為40千米/小時;②乙的速度始終為50千米/小時;③行駛1小時時乙在甲前10千米;④3小時時甲追上乙.其中正確的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

同步練習冊答案