【題目】如圖,四邊形ABCD為矩形,H、F分別為AD、BC邊的中點,四邊形EFGH為矩形,E、G分別在AB、CD邊上,則圖中四個直角三角形面積之和與矩形EFGH的面積之比為_____.
【答案】1:1
【解析】
根據(jù)矩形性質(zhì)得出AD=BC,AD∥BC,∠D=90°,求出四邊形HFCD是矩形,得出△HFG的面積是CD×DH=S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.
連接HF,
∵四邊形ABCD為矩形,
∴AD=BC,AD∥BC,∠D=90°
∵H、F分別為AD、BC邊的中點,
∴DH=CF,DH∥CF,
∵∠D=90°,
∴四邊形HFCD是矩形,
∴△HFG的面積是CD×DH=S矩形HFCD,
即S△HFG=S△DHG+S△CFG,
同理S△HEF=S△BEF+S△AEH,
∴圖中四個直角三角形面積之和與矩形EFGH的面積之比是1:1,
故答案為:1:1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三邊長分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判斷△ABC是直角三角形的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=a(x﹣2)2+k中,函數(shù)y1與自變量x的部分對應(yīng)值如表:
x | … | 1 | 2 | 3 | 4 | … |
y | … | 2 | 1 | 2 | 5 | … |
(1)求該二次函數(shù)的表達式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC,△CDE均為等邊三角形(每個內(nèi)角都是60°),連接BD,AE交于點O,BC與AE交于點P.試說明:∠POB=60°.經(jīng)過觀察分析,解題的關(guān)鍵是先利用( )說明△EAC≌△DBC.
A.SSSB.ASAC.SASD.AAS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,對角線AC與BD交于點O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。
A. OA=OC,OB=ODB. OA=OC,AB∥CD
C. AB=CD,OA=OCD. ∠ADB=∠CBD,∠BAD=∠BCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:
跳繩數(shù)/個 | 81 | 85 | 90 | 93 | 95 | 98 | 100 |
人 數(shù) | 1 | 2 | 8 | 11 | 5 |
將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;
(2)這個班同學(xué)這次跳繩成績的眾數(shù)是個,中位數(shù)是個;
(3)若跳滿90個可得滿分,學(xué)校初三年級共有720人,試估計該中學(xué)初三年級還有多少人跳繩不能得滿分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上,已知∠α=36°,求長方形卡片的周長.(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某運動品牌對第一季度甲、乙兩款運動鞋的銷售情況進行統(tǒng)計,兩款運動鞋的銷售量及總銷售額如圖所示,已知一月份乙款運動鞋的銷售量是甲款的,第一季度這兩款運動鞋的銷售單價保持不變(銷售額=銷售單價×銷售量)
(1)求一月份乙款運動鞋的銷售量.
(2)求兩款運動鞋的銷售單價(單位:元)
(3)請補全兩個統(tǒng)計圖.
(4)結(jié)合第一季度的銷售情況,請你對這兩款運動鞋的進貨,銷售等方面提出一條建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為4的正方形紙片ABCD折疊,使得點A落在邊CD的中點E處,折痕為FG,點F、G分別在邊AD、BC上,則折痕FG的長度為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com