【題目】1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖.已知入口BC3.9米,門衛(wèi)室外墻AB上的O點(diǎn)處裝有一盞路燈,點(diǎn)O與地面BC的距離為3.3米,燈臂OM長(zhǎng)為1.2米(燈罩長(zhǎng)度忽略不計(jì)),∠AOM60°.

1)求點(diǎn)M到地面的距離;

2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進(jìn)入時(shí),貨車需與護(hù)欄CD保持0.65米的安全距離,此時(shí),貨車能否安全通過(guò)?若能,請(qǐng)通過(guò)計(jì)算說(shuō)明;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):1.73,結(jié)果精確到0.01米)

【答案】13.9米;(2)貨車能安全通過(guò).

【解析】

(1)過(guò)MMNABN,交BA的延長(zhǎng)線于N,在RtOMN中,求出ON的長(zhǎng),即可求得BN的長(zhǎng),即可求得點(diǎn)M到地面的距離;

(2)左邊根據(jù)要求留0.65米的安全距離,即取CE=0.65,車寬EH=2.55,計(jì)算高GH的長(zhǎng)即可,與3.5作比較,可得結(jié)論.

(1)如圖,過(guò)MMNABN,交BA的延長(zhǎng)線于N,

RtOMN中,∠NOM=60°,OM1.2,∴∠M=30°,

ONOM0.6

NBON+OB3.3+0.63.9,

即點(diǎn)M到地面的距離是3.9米;

(2)CE0.65,EH2.55,∴HB3.92.550.650.7,

過(guò)HGHBC,交OMG,過(guò)OOPGHP,

∵∠GOP=30°,∴tan30°,

GPOP0.404,

GH3.3+0.404=3.704≈3.70>3.5,

∴貨車能安全通過(guò).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是等邊三角形ABC內(nèi)一點(diǎn),且PA=3,PB=4,PC=5,若將△APB繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)后得到△CQB,則∠APB的度數(shù) ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,P為CD的中點(diǎn),連結(jié)AP,過(guò)點(diǎn)B作BE⊥AP于點(diǎn)E,延長(zhǎng)CE交AD于點(diǎn)F,過(guò)點(diǎn)C作CH⊥BE于點(diǎn)G,交AB于點(diǎn)H,連接HF.下列結(jié)論正確的是( 。

A. CE= B. EF= C. cos∠CEP= D. HF2=EFCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),設(shè)移動(dòng)的時(shí)間為ts.

(1)如果P、Q分別從A、B同時(shí)出發(fā),若t=3s,求四邊形APQC的面積.

(2)如果P、Q分別從A、B同時(shí)出發(fā),當(dāng)△PBQ的面積等于8cm2時(shí),求t的值.

(3)若△ABC與△BPQ相似,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(4,0),與y軸交于點(diǎn)B.在x軸上有一動(dòng)點(diǎn)C(m,0)(0<m<4),過(guò)點(diǎn)Cx軸的垂線交直線AB于點(diǎn)E,交該二次函數(shù)圖象于點(diǎn)D

1)求a的值和直線AB的解析式;

2)過(guò)點(diǎn)DDFAB于點(diǎn)F,設(shè)ACE,DEF的面積分別為S1,S2,若S1=4S2,求m的值;

3)點(diǎn)H是該二次函數(shù)圖象上位于第一象限的動(dòng)點(diǎn),點(diǎn)G是線段AB上的動(dòng)點(diǎn),當(dāng)四邊形DEGH是平行四邊形,且周長(zhǎng)取最大值時(shí),求點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店以每件20元的價(jià)格購(gòu)進(jìn)一批商品,如果以每件30元銷售,那么半月內(nèi)可售出400件.根據(jù)銷售經(jīng)驗(yàn),銷售單價(jià)每提高1元,半月內(nèi)的銷售量相應(yīng)減少20件.如何提高銷售單價(jià),才能在半月內(nèi)獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是⊙O上一點(diǎn),點(diǎn)P在直徑AB的延長(zhǎng)線上,⊙O的半徑為3,PB=2,PC=4.

(1)求證:PC是⊙O的切線.

(2)求tan∠CAB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小磊要制作一個(gè)三角形的鋼架模型,在這個(gè)三角形中,長(zhǎng)度為x(單位:cm)的邊與這條邊上的高之和為40 cm,這個(gè)三角形的面積S(單位:cm2)x(單位:cm)的變化而變化.

1)請(qǐng)直接寫(xiě)出Sx之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量x的取值范圍)

2)當(dāng)x是多少時(shí),這個(gè)三角形面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案