【題目】若|a|=8,b2=49,且|a﹣b|=b﹣a,則a﹣b=_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年月日是全國(guó)中小學(xué)安全教育日,為了讓學(xué)生了解安全知識(shí),增強(qiáng)安全意識(shí),我校舉行了一次“安全知識(shí)競(jìng)賽”.為了了解這次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)?yōu)闃颖,繪制了下列統(tǒng)計(jì)圖(說(shuō)明:A級(jí):90分——100分;B級(jí):75分——89分;C級(jí):60分——74分;D級(jí):60分以下).請(qǐng)結(jié)合圖中提供的信息,解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中C級(jí)所在的扇形的圓心角度數(shù)是 .(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有2000名學(xué)生,請(qǐng)你用此樣本估計(jì)安全知識(shí)競(jìng)賽中A級(jí)和B級(jí)的學(xué)生共約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快推進(jìn)教育現(xiàn)代化,某中學(xué)計(jì)劃分批購(gòu)買部分A品牌電腦和B品牌課桌.下表是前兩次購(gòu)買的情況:
A品牌電腦的數(shù)量 (單位:臺(tái)) | B品牌課桌的數(shù)量 (單位:張) | 總價(jià) (單位:元) | |
第一次 | 10 | 200 | 70000 |
第二次 | 15 | 100 | 75000 |
(1)每臺(tái)A品牌電腦和每張B品牌課桌的價(jià)格各是多少元?
(2)在“五·一”黃金周期間,經(jīng)銷商對(duì)一次性購(gòu)買量大的客戶打折優(yōu)惠:一次性購(gòu)買A品牌電腦不少于50臺(tái),按9折優(yōu)惠;一次性購(gòu)買B品牌課桌不少于450張,按8折優(yōu)惠.如果學(xué)校再次購(gòu)買A品牌電腦和B品牌課桌若干,恰好花去24萬(wàn)元,并且均享受了優(yōu)惠,那么學(xué)校可能有哪幾種購(gòu)買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. x=-1是方程4x+3=0的解
B. m=-1是方程9m+4m=13的解
C. x=1是方程3x-2=3的解
D. x=0是方程0.5(x+3)=1.5的解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市為創(chuàng)建“國(guó)家級(jí)森林城市”,政府決定對(duì)江邊一處廢棄荒地進(jìn)行綠化,要求栽植甲、乙兩種不同的樹(shù)苗共6000棵,且甲種樹(shù)苗不得多于乙種樹(shù)苗.某承包商以26萬(wàn)元的報(bào)價(jià)中標(biāo)承包了這項(xiàng)工程.根據(jù)調(diào)查及相關(guān)資料表明:移栽一棵樹(shù)苗的平均費(fèi)用為8元,甲、乙兩種樹(shù)苗的購(gòu)買價(jià)及成活率如表:
設(shè)購(gòu)買甲種樹(shù)苗x棵,承包商獲得的利潤(rùn)為y元.請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1) 設(shè)y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2) 承包商要獲得不低于中標(biāo)價(jià)16%的利潤(rùn),應(yīng)如何選購(gòu)樹(shù)苗?
(3) 政府與承包商的合同要求,栽植這批樹(shù)苗的成活率必須不低于93%,否則承包商出資補(bǔ)栽;若成貨率達(dá)到94%以上(含94%),則政府另給予工程款總額6%的獎(jiǎng)勵(lì),該承包商應(yīng)如何選購(gòu)樹(shù)苗才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)O,設(shè)有下列條件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,則下列推理不成立的是( 。
A. ①④⑥B. ①③⑤C. ①②⑥D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(-1,y1)、B(2,y2)、C(-3,y3)在函數(shù)y=-5(x+1)2+3的圖像上,則y1、y2、y3的大小關(guān)系是( )
A.y1< y2< y3
B.y1< y3 < y2
C.y2 < y3 < y1
D.y3< y2 < y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,已知AB∥DC,AB=DC,在不添加任何輔助線的前提下,要想該四邊形為矩形,只需加上的一個(gè)條件是___(填上你認(rèn)為正確的一個(gè)答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某兒童服裝店欲購(gòu)進(jìn)A、B兩種型號(hào)的兒童服裝.經(jīng)調(diào)查:B型號(hào)童裝的進(jìn)貨單價(jià)是A型號(hào)童裝的進(jìn)貨單價(jià)的兩倍,購(gòu)進(jìn)A型號(hào)童裝60件和B型號(hào)童裝40件共用去2100元.
(1)、求A、B兩種型號(hào)童裝的進(jìn)貨單價(jià)各是多少元?
(2)、若該店每銷售1件A型號(hào)童裝可獲利4元,每銷售1件B型號(hào)童裝可獲利9元,該店準(zhǔn)備用不超過(guò)6300元購(gòu)進(jìn)A、B兩種型號(hào)童裝共300件,且這兩種型號(hào)童裝全部售出后總獲利不低于1795元.問(wèn)該店應(yīng)該怎樣安排進(jìn)貨,才能使總獲利最大?最大總獲利為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com