精英家教網 > 初中數學 > 題目詳情

【題目】按《航空障礙燈(MH/T60121999)》的要求,為保障飛機夜間飛行的安全,在高度為45米至105米的建筑上必須安裝中光強航空障礙燈(AviationObstructionlight).中光強航空障礙燈是以規(guī)律性的固定模式閃光.在下圖中你可以看到某一種中光強航空障礙燈的閃光模式,燈的亮暗呈規(guī)律性交替變化,那么在一個連續(xù)的10秒內,該航空障礙燈處于亮的狀態(tài)的時間總和最長可達__秒.

【答案】7

【解析】

根據圖中的燈的亮暗規(guī)律,不難找出暗0.5秒,亮1秒,如此循環(huán),可得到結果.

解:根據題意,當該航空障礙燈處于亮的狀態(tài)的時間總和最長時,

燈的亮暗呈規(guī)律性交替變化為:亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,暗0.5秒,亮1秒,

在這10秒中,航空障礙燈處于亮的狀態(tài)的時間總和為7秒,

故答案為7

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,中,分別在四條邊上.,,

1)寫出圖中的相似三角形,并證明.

2)當時,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中華文明,源遠流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統文化,某中學德育處組織了一次全校2000名學生參加的漢字聽寫大賽.為了解本次大賽的成績,學校德育處隨機抽取了其中200名學生的成績作為樣本進行統計,制成如下不完整的統計圖表:

成績x(分)分數段

頻數(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

頻數分布直方圖

根據所給的信息,回答下列問題:

1m=________;n=________

2)補全頻數分布直方圖;

3)這200名學生成績的中位數會落在________分數段;

4)若成績在90分以上(包括90分)為優(yōu)等,請你估計該校參加本次比賽的2000名學生中成績是優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,BC4,動點MN分別從A,C同時向B,D勻速移動,且兩點的運動速度相同,當動點M到達B點時,MN同時停止運動,過點NNPCD,交BDP點,當△BMP為等腰三角形時,AM_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在正方形ABCD中,以CD為底邊在正方形外側作等腰△CDE,連接BE與對角線AC交于點P、與CD交于點H,連接PD

1)如圖1,當∠DEC60°時,求證:PAPE;

2)如圖2,當∠DEC90°時,

①求tanEBC的值;②求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線Cyax22ax+3與直線lykx+b交于A,B兩點,且點Ay軸上,點Bx軸的正半軸上.

1)求點A的坐標;

2)若a=﹣1,求直線l的解析式;

3)若﹣3k<﹣1,求a的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在銳角△ABC中,AB=AC,ADBC邊上的高,EAC中點.

(1)如圖1,過點CCFABF點,連接EF.若∠BAD=20°,求∠AFE的度數;

(2)若M為線段BD上的動點(點M與點D不重合),過點CCNAMN點,射線EN,AB交于P點.

①依題意將圖2補全;

②小宇通過觀察、實驗,提出猜想:在點M運動的過程中,始終有∠APE=2∠MAD

小宇把這個猜想與同學們進行討論,形成了證明該猜想的幾種想法:

想法1:連接DE,要證∠APE=2∠MAD,只需證∠PED=2∠MAD

想法2:設∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通過角度計算得∠APE=2α

想法3:在NE上取點Q,使∠NAQ=2∠MAD,要證∠APE=2∠MAD,只需證△NAQ∽△APQ.……

請你參考上面的想法,幫助小宇證明∠APE =2∠MAD.(一種方法即可)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,AB6,BC8,點PA出發(fā)在線段AD上以1個單位/秒向點D運動,點Q同時從點C出發(fā),以1個單位/秒的速度向點A運動,當點P到達點D時,點Q也隨之停止運動.

1)設△APQ的面積為S,點P的運行時間為t,求St的函數關系式;

2t取幾時S的值最大,最大值是多少?

3)當t為何值時,△APQ是等腰三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經過A(0,3)C(2,n)兩點,直線lyx+2C點,且與y軸交于點B,拋物線上有一動點E,過點E作直線EFx軸于點F,交直線BC于點D

(1)求拋物線的解析式.

(2)如圖1,當點E在直線BC上方的拋物線上運動時,連接BE,BF,是否存在點E使直線BC將△BEF的面積分為23兩部分?若存在,求出點E的坐標,若不存在說明理由;

(3)如圖2,若點Ey軸右側的拋物線上運動,連接AE,當∠AED=∠ABC時,直接寫出此時點E的坐標.

查看答案和解析>>

同步練習冊答案