【題目】正方形ABCD和正方形AEFG,AB=12,AE=6.設(shè)∠BAE=α(0°≤α≤45°,點(diǎn)E在正方形ABCD內(nèi)部),BE的延長(zhǎng)線交直線DG于點(diǎn)Q.
(1)求證:△ADG≌△ABE;
(2)試求出當(dāng)α由0°變化到45°過(guò)程中,點(diǎn)Q運(yùn)動(dòng)的路線長(zhǎng),并畫(huà)出點(diǎn)Q的運(yùn)動(dòng)路徑;直接寫(xiě)出當(dāng)α等于多少度時(shí),點(diǎn)G恰好在點(diǎn)Q運(yùn)動(dòng)的路徑上.
【答案】(1)證明見(jiàn)解析;(2)圖見(jiàn)解析;.
【解析】
(1)由正方形的性質(zhì)得出AD=AB,AG=AE,∠EAG=∠BAD=90°,易證∠DAG=∠BAE,由SAS證得△ADG≌△ABE;
(2)由△ADG≌△ABE,得出∠ADG=∠ABE,則∠BQD=∠BAD=90°,得出點(diǎn)Q的運(yùn)動(dòng)軌跡是以BD為直徑的,所對(duì)的圓心角是90°,BD=AB=12,則點(diǎn)Q的運(yùn)動(dòng)路徑長(zhǎng)==3π,由AE=6,得出AE=AG=BD=OD,當(dāng)B、E、G三點(diǎn)共線,且OG=OD時(shí),Q與G重合,則△OAG是等邊三角形,得出∠GAO=60°,推出∠BAE=∠DAG=60°﹣45°=15°,即可得出結(jié)果.
(1)證明:∵四邊形ABCD與四邊形AEFG是正方形,
∴AD=AB,AG=AE,∠EAG=∠BAD=90°,
∴∠DAG+∠DAE=∠BAE+∠DAE=90°,
∴∠DAG=∠BAE,
在△ADG和△ABE中,,
∴△ADG≌△ABE(SAS);
(2)解:∵△ADG≌△ABE,
∴∠ADG=∠ABE,
∴∠BQD=∠BAD=90°,
∴點(diǎn)Q的運(yùn)動(dòng)軌跡是以BD為直徑的,所對(duì)的圓心角是90°,
∵AB=12,
∴BD=AB=12,
∴點(diǎn)Q的運(yùn)動(dòng)路徑長(zhǎng)==3π,
點(diǎn)Q的運(yùn)動(dòng)路徑如圖1所示:
∵AE=6,
∴AE=AG=BD=OD,
當(dāng)B、E、G三點(diǎn)共線,且OG=OD時(shí),Q與G重合,如圖2所示:
則△OAG是等邊三角形,
∴∠GAO=60°,
∵∠DAC=45°,
∴∠BAE=∠DAG=60°﹣45°=15°,
∴當(dāng)α=15°時(shí),點(diǎn)G恰好在點(diǎn)Q運(yùn)動(dòng)的路徑上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是直徑AB所對(duì)的半圓弧,點(diǎn)P是與直徑AB所圍成圖形的外部的一個(gè)定點(diǎn),AB=8cm,點(diǎn)C是上一動(dòng)點(diǎn),連接PC交AB于點(diǎn)D.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段AD,CD,PD,進(jìn)行了研究,設(shè)A,D兩點(diǎn)間的距離為x cm,C,D兩點(diǎn)間的距離為cm,P,D兩點(diǎn)之間的距離為cm.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫(huà)圖、測(cè)量,分別得到了,與x的幾組對(duì)應(yīng)值:
x/cm | 0.00 | 1.00 | 2.00 | 3.00 | 3.20 | 4.00 | 5.00 | 6.00 | 6.50 | 7.00 | 8.00 |
/cm | 0.00 | 1.04 | 2.09 | 3.11 | 3.30 | 4.00 | 4.41 | 3.46 | 2.50 | 1.53 | 0.00 |
/cm | 6.24 | 5.29 | 4.35 | 3.46 | 3.30 | 2.64 | 2.00 | m | 1.80 | 2.00 | 2.65 |
補(bǔ)充表格;(說(shuō)明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留兩位小數(shù))
(2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫(huà)出函數(shù)的圖象:
(3)結(jié)合函數(shù)圖象解決問(wèn)題:當(dāng)AD=2PD 時(shí),AD的長(zhǎng)度約為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與直線y2=3x-5相交于A(2,m),B(n,-6)兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2) 當(dāng)y1﹥y2﹥0時(shí),請(qǐng)直接寫(xiě)出x的取值范圍;
(3)連接OA,OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,為原點(diǎn),點(diǎn)在軸上,點(diǎn)在軸上,點(diǎn)的坐標(biāo)為(4,3),拋物線與軸交于點(diǎn),與直線交于點(diǎn),與軸交于兩點(diǎn).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)從點(diǎn)出發(fā),在線段上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)從點(diǎn)出發(fā),在線段上以每秒個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為(秒).
①當(dāng)為何值時(shí),得面積最。
②是否存在某一時(shí)刻,使為直角三角形?若存在,直接寫(xiě)出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4 的打印紙等,這些矩形的長(zhǎng)與寬之比都為:1,我們將具有這類(lèi)特征的矩形稱(chēng)為“完美矩形”如圖(1),在“完美矩形”ABCD 中,點(diǎn) P 為 AB 邊上的定點(diǎn),且 AP=AD.
(1)求證:PD=AB.
(2)如圖(2),若在“完美矩形“ABCD 的邊 BC 上有一動(dòng)點(diǎn) E,當(dāng)的值是多少時(shí),△PDE 的周長(zhǎng)最小?
(3)如圖(3),點(diǎn) Q 是邊 AB 上的定點(diǎn),且 BQ=BC.已知 AD=1,在(2)的條件下連接 DE 并延長(zhǎng)交 AB 的延長(zhǎng)線于點(diǎn) F,連接 CF,G 為 CF 的中點(diǎn),M、N 分別為線段 QF 和 CD 上的動(dòng)點(diǎn),且始終保持 QM=CN,MN 與 DF 相交于點(diǎn) H,請(qǐng)問(wèn) GH 的長(zhǎng)度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】不透明的袋中有四個(gè)小球,分別標(biāo)有數(shù)字1、2、3、4,它們除了數(shù)字外都相同。第一次從中摸出一個(gè)小球,記錄數(shù)字后放回袋中,第二次搖勻后再隨機(jī)摸出一個(gè)小球.
(1)求第一次摸出的小球所標(biāo)數(shù)字是偶數(shù)的概率;
(2)求兩次摸出的小球所標(biāo)數(shù)字相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為落實(shí)立德樹(shù)人的根本任務(wù),加強(qiáng)思改、歷史學(xué)科教師的專(zhuān)業(yè)化隊(duì)伍建設(shè).某校計(jì)劃從前來(lái)應(yīng)聘的思政專(zhuān)業(yè)(一名研究生,一名本科生)、歷史專(zhuān)業(yè)(一名研究生、一名本科生)的高校畢業(yè)生中選聘教師,在政治思想審核合格的條件下,假設(shè)每位畢業(yè)生被錄用的機(jī)會(huì)相等
(1)若從中只錄用一人,恰好選到思政專(zhuān)業(yè)畢業(yè)生的概率是 :
(2)若從中錄用兩人,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好選到的是一名思政研究生和一名歷史本科生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從﹣2,﹣1,0,,1,2這六個(gè)數(shù)字中,隨機(jī)抽取一個(gè)數(shù)記為a,則使得關(guān)于x的方程=1的解為非負(fù)數(shù),且滿足關(guān)于x的不等式組只有三個(gè)整數(shù)解的概率是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣2x2+(m+9)x﹣6的對(duì)稱(chēng)軸是x=2.
(1)求拋物線表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將該拋物線向右平移1個(gè)單位,平移后的拋物線與原拋物線相交于點(diǎn)A,求點(diǎn)A的坐標(biāo);
(3)拋物線y=﹣2x2+(m+9)x﹣6與y軸交于點(diǎn)C,點(diǎn)A關(guān)于平移后拋物線的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)B,兩條拋物線在點(diǎn)A、C和點(diǎn)A、B之間的部分(包含點(diǎn)A、B、C)記為圖象M.將直線y=2x﹣2向下平移b(b>0)個(gè)單位,在平移過(guò)程中直線與圖象M始終有兩個(gè)公共點(diǎn),請(qǐng)你寫(xiě)出b的取值范圍 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com