【題目】在△ABC中,AC4BC2,點D在射線AB上,在構(gòu)成的圖形中,△ACD為等腰三角形,且存在兩個互為相似的三角形,則CD的長是_____

【答案】2

【解析】

分兩種情形:①如圖1中,當點D在線段AB上,DC=AD,且BCD∽△BAC時,設(shè)CD=xBD=y.②如圖2中,當點DAB的延長線上時,AC=AD=4,DCBDAC.設(shè)CD=xBD=y,分別構(gòu)建方程組求解.

①如圖1中,當點D在線段AB上,DCAD,且BCD∽△BAC時,設(shè)CDxBDy,

則有:

,

解得:x,y

CD

②如圖2中,當點DAB的延長線上時,ACAD4,DCBDAC.設(shè)CDxBDy,

則:

,

解得x2,y1,

CD2

綜上所述,滿足條件的CD的值為2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(1,1),點Bx軸正半軸上,點D在第三象限的雙曲線y上,過點CCEx軸交雙曲線于點E,則CE的長為( )

A. B. C. 3.5D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,過軸于點.點為反比例函數(shù)圖象上的一動點,過點軸于點,連接.直線軸的負半軸交于點

1)求反比例函數(shù)的表達式;

2)若,求的面積;

3)是否存在點,使得四邊形為平行四邊形?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進兩種商品,購買1商品比購買1商品多花10元,并且花費300元購買商品和花費100元購買商品的數(shù)量相等.

1)求購買一個商品和一個商品各需要多少元;

2)商店準備購買、兩種商品共80個,若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,半徑為1的⊙Ox軸正半軸和y軸正半軸分別交于A,B兩點,直線lykx+2k0)與x軸和y軸分別交于P,M兩點.

1)當直線與⊙O相切時,求出點M的坐標和點P的坐標;

2)如圖2,當點P在線段OA上時,直線1與⊙O交于E,F兩點(點E在點F的上方)過點FFCx軸,與⊙O交于另一點C,連結(jié)ECy軸于點D

①如圖3,若點P與點A重合時,求OD的長并寫出解答過程;

②如圖2,若點P與點A不重合時,OD的長是否發(fā)生變化,若不發(fā)生變化,請求出OD的長并寫出解答過程;若發(fā)生變化,請說明理由.

3)如圖4,在(2)的基礎(chǔ)上,連結(jié)BF,將線段BF繞點B逆時針旋轉(zhuǎn)90°BQ,若點QCE的延長線時,請用等式直接表示線段FC,FQ之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點坐標為軸上點,將線段繞著點順時針旋轉(zhuǎn)得到,過點作直線軸于,過點直線

1)當點的中點時,求直線的函數(shù)表達式.

2)當時,求的面積.

3)在直線上是否存在點,使得?若存在,試用的代數(shù)式表示點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE

1)發(fā)現(xiàn):當正方形AEFG繞點A旋轉(zhuǎn),如圖②所示.

①線段DGBE之間的數(shù)量關(guān)系是   ;

②直線DG與直線BE之間的位置關(guān)系是   ;

2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD2AB,AG2AE時,上述結(jié)論是否成立,并說明理由.

3)應用:在(2)的情況下,連接BG、DE,若AE1,AB2,求BG2+DE2的值(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家醫(yī)保局相關(guān)負責人325日表示,2019年底前我國將實現(xiàn)生育保險基金并入職工基本醫(yī)療保險基金,統(tǒng)一征繳,就是通常所說的“五險變四險”.傳統(tǒng)的五險包括:養(yǎng)老保險、失業(yè)保險、醫(yī)療保險、工傷保險、生育保險.某單位從這五險中隨機抽取兩種,為員工提高保險比例,則正好抽中養(yǎng)老保險和醫(yī)療保險的概率是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接疫情徹底結(jié)束后的購物高峰,某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:

運動鞋價格

進價(元/雙)

m

m20

售價(元/雙)

240

160

已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.

1)求m的值;

2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于21700元,且甲種運動鞋的數(shù)量不超過100雙,問該專賣店共有幾種進貨方案?

3)在(2)的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠a50a70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?

查看答案和解析>>

同步練習冊答案