精英家教網 > 初中數學 > 題目詳情

【題目】在等邊中,點分別在邊,上.

1)如圖,若,以為邊作等邊,于點,連接

求證:①;

平分

2)如圖,若,作的延長線于點,求證:

【答案】1)①見解析;②見解析;(2)見解析

【解析】

1)①利用SAS即可證出△ABF≌△CAE,再根據全等三角形的性質即可證出結論;

②過點DDMAFM,作DNECEC延長線于N,利用AAS證出△ADM≌△CDN,即可得出DM=DN,然后根據角平分線的判定定理即可證出結論;

2)在CB上截取一點G,使CF=FG,連接AG,利用SAS證出△EAC≌△GCA,可得CE=AG,∠AEC=CGA,然后利用ASA證出△AGF≌△PCF,可得AG=CP,從而證出結論.

解:(1)①△ABC為等邊三角形

AB=CA,∠B=CAE=BAC=60°

在△ABF和△CAE

∴△ABF≌△CAE

②過點DDMAFM,作DNECEC延長線于N

∵△ABF≌△CAE

∴∠BAF=ACE

∴∠AOC=180°-∠ACE-∠OAC=180°-∠BAF-∠OAC=180°-∠BAC=120°

∴∠MDN=360°-∠AOC-∠DMO-∠DNO=60°

∵△ACD為等邊三角形

DA=DC,∠ADC=60°

∴∠ADC=MDN

∴∠ADC-∠MDC=MDN-∠MDC

∴∠ADM=CDN

在△ADM和△CDN

∴△ADM≌△CDN

DM=DN

平分

2)在CB上截取一點G,使CF=FG,連接AG

AE=2CF,CG=CFFG=2CF

AE=CG

∵△ABC為等邊三角形

∴∠EAC=GCA=60°

在△EAC和△GCA

∴△EAC≌△GCA

CE=AG,∠AEC=CGA

∵∠AEC=BCP

∴∠CGA=BCP,即∠AGF=PCF

在△AGF和△PCF

∴△AGF≌△PCF

AG=CP

CE=CP

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且

A(-1,0),B(4,0),∠ACB=90°.

(1)求過A、B、C三點的拋物線解析式;

(2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;

(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.

圖1 備用圖

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊ABCD中,AD=2ABFAD的中點,作CE⊥AB,垂足E在線段AB上,連接EFCF,則下列結論中一定成立的是 (把所有正確結論的序號都填在橫線上)

1∠DCF=∠BCD,(2EF=CF;(3SΔBEC=2SΔCEF;(4∠DFE=3∠AEF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程解應用題:第19屆亞洲運動會將于2022910日至25日在杭州舉行,杭州奧體博覽城將成為杭州2022年亞運會的主場館,某工廠承包了主場館建設中某一零件的生產任務,需要在規(guī)定時間內生產24000個零件,若每天比原計劃多生產30個零件,則在規(guī)定時間內可以多生產300個零件.

1)求原計劃每天生產的零件個數和規(guī)定的天數.

2)為了提前完成生產任務,工廠在安排原有工人按原計劃正常生產的同時,引進5組機器人生產流水線共同參與零件生產,已知每組機器人生產流水線每天生產零件的個數比20個工人原計劃每天生產的零件總數還多,按此測算,恰好提前兩天完成24000個零件的生產任務,求原計劃安排的工人人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設AE,BF交于點G,連接DG,則DG的最小值為_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A、B兩點在正方形網格的格點上,每個方格都是邊長為1的正方形.點C也在格點上,且△ABC為等腰三角形,則符合條件的點C有( )個.

A.3B.5C.8D.10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD,AD=4,E是對角線AC上一點,連接DE,過點EEFED,AB于點F,連接DF,AC于點G,EFG沿EF翻折得到EFM,連接DM,EF于點N,若點FAB的中點,EMN的周長是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】美麗的甬江宛如一條玉帶穿城而過,數學課外實踐活動中,小林在甬江岸邊的A, B兩點處,利用測角儀分別對西岸的一觀景亭D進行測量.如圖,測得∠DAC=45°,DBC=65°,若AB=114米,求觀景亭D到甬江岸邊AC的距離約為多少米?

(參考數據:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,,且,則________

查看答案和解析>>

同步練習冊答案