【題目】已知不等臂蹺蹺板AB長為3,蹺蹺板AB的支撐點O到地面上的點H的距高OH=0.6米。當(dāng)蹺蹺板AB的一個端點A碰到地面時,AB與地面上的直線AH的夾角∠OAH的度數(shù)為30°.

1)當(dāng)AB的另一個端點B碰到地面時(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?

2)當(dāng)AB的另一個端點B碰到地面時(如右圖),A到直線BH的距離是多少米?

【答案】1;(21

【解析】

1)先根據(jù)作圖中求出OB的長度,再利用即可

2)過AACBH,垂足為點C.AC長即為所求.利用AB即可求

解:(1) ,OH=0.6

OA=1.2

AB=3mAO=1.2m

OB=3-1.2=1.8m

RtBOH中,

(2)AACBH,垂足為點C.AC長即為所求.

AC=AB=3×=1m.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,對角線,相交于點,動點由點出發(fā),沿向點運動.設(shè)點的運動路程為的面積為,的函數(shù)關(guān)系圖象如圖所示,則邊的長為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標(biāo)有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).

(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);

(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)發(fā)現(xiàn)在賓館房間的洗手盤臺面上有一瓶洗手液(如圖①).于是好奇的小王同學(xué)進(jìn)行了實地測量研究.當(dāng)小王用一定的力按住頂部A下壓如圖②位置時,洗手液從噴口B流出,路線近似呈拋物線狀,且a=﹣.洗手液瓶子的截面圖下部分是矩形CGHD.小王同學(xué)測得:洗手液瓶子的底面直徑GH12cm,噴嘴位置點B距臺面的距離為16cm,且BD、H三點共線.小王在距離臺面15.5cm處接洗手液時,手心Q到直線DH的水平距離為3cm,若學(xué)校組織學(xué)生去南京進(jìn)行研學(xué)實踐活動,若小王不去接,則洗手液落在臺面的位置距DH的水平距離是( 。cm

A.12B.12C.6D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年的豬肉價格一直以來一路飆升,市民們一致聲稱:吃不起!近日,王老師通過相關(guān)部門了解到20191月到10月湖州各大超市的豬肉的月平均售價,并繪制了如圖所示的函數(shù)圖象,其中1月份到5月份的豬肉售價y與月份x之間的關(guān)系符合線段AB,5月份到10月份的豬肉售價y與月份x之間的關(guān)系符合拋物線BC.已知點A1,16),點B5,17),點C10,42),且點B是拋物線的頂點.

1)求線段AB和拋物線BC的解析式;

2)已知1月份到5月份豬肉的平均進(jìn)價為13/斤,5月份到10月份豬肉的平均進(jìn)價z與月份x之間的關(guān)系為z3x2x為正整數(shù)),若設(shè)每銷售一斤豬肉獲得的利潤為w,試求1月到10w至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形窗戶邊框ABCD由矩形AEFD,矩形BNME,矩形CFMN組成,其中AEBE=13.已知制作一個窗戶邊框的材料的總長是6米,設(shè)BC=x(),窗戶邊框ABCD的面積為S(2)

(1)①用x的代數(shù)式表示AB

②求x的取值范圍.

(2)求當(dāng)S達(dá)到最大時,AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對鈍角α,定義三角函數(shù)值如下:

sinαsin(180°-α)cosα=-cos(180°-α)

(1)sin120°,cos120°的值;

(2)若一個鈍角三角形的三個內(nèi)角比是114,點AB是這個三角形的兩個頂點,sinA,cosB是方程4x2mx10的兩個不相等的實數(shù)根,求m的值及∠A和∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板(其中,)如圖擺放,所對的直角邊與的斜邊恰好重合。以為直徑的圓經(jīng)過點C,且與相交于點E,連接,連接并延長交F.

1)求證:平分;

2)求的面積的比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 問題與探索

問題情境:課堂上,老師讓同學(xué)們以菱形紙片的剪拼為主題開展數(shù)學(xué)活動.如圖(1),將一張菱形紙片ABCD(BAD>90°)沿對角線AC剪開,得到ABC和ACD.

操作發(fā)現(xiàn):

(1)將圖(1)中的ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=BAC,得到如圖(2)所示的ACD,分別延長BC和DC交于點E,則四邊形ACEC的形狀是

(2)創(chuàng)新小組將圖(1)中的ACD以點A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角α,使α=2BAC,得到如圖(3)所示的ACD,連接DB、CC,得到四邊形BCCD,發(fā)現(xiàn)它是矩形,請證明這個結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案