【題目】如圖,在ABC中,ABAC,點E在邊BC上移動(E不與點BC重合),滿足∠DEF=∠C,且點D、F分別在邊AB、AC上.

1)求證:BDE∽△CEF;

2)當點E移動到BC的中點時,求證:DE平分∠BDF.

【答案】1)證明見詳解;(2)證明見詳解.

【解析】

1)根據(jù)等腰三角形的性質得到∠B=C,根據(jù)三角形的內角和和平角的定義得到∠BDE=CEF,于是得到結論;

2)由(1)可得,根據(jù)點EBC的中點,則可化為,即可證:△DEF∽△ECF,則有△BDE∽△EDF,∠BDE=EDF,可得DE平分∠BDF

解:(1)∵AB=AC,
∴∠B=C=DEF,
∵∠BDE=180°-B-DEB,
CEF=180°-DEF-DEB,

∴∠BDE=CEF,
∴△BDE∽△CEF;

2)∵△BDE∽△CEF,
,

∵點EBC的中點,
BE=CE,

∵∠DEF=B=C
∴△DEF∽△ECF,

∴△BDE∽△EDF,

∴∠BDE=EDF,
DE平分∠BDF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】關于x的一元二次方程x2+2k+1x+k2+1=0有兩個不等實根x1x2

1)求實數(shù)k的取值范圍

2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2-2(k-1)x+k2 =0有兩個實數(shù)根x1.x2.

(1)求實 數(shù)k的取值范圍;

(2)若(x1+1)(x2+1)=2,試求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F

1)證明:DF是⊙O的切線;

2)若AC3AE,FC6,求AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2,AD=4,M點是BC的中點,A為圓心,AB為半徑的圓交AD于點E.點P在弧BE上運動,則PM+DP的最小值為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進價為20/件,試營銷階段發(fā)現(xiàn):當銷售價格為25/件時,每天的銷售量為250件,每件銷售價格每上漲1元,每天的銷售量就減少10件。

1)當銷售價格上漲時,請寫出每天的銷售量(件)與銷售價格(元/件)之間的函數(shù)關系式;

2)如果要求每天的銷售量不少于10件,且每件文具的利潤至少為25元,問當銷售價格定為多少時,該文具每天的銷售利潤最大,最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某居民小區(qū)一處圓柱形的輸水管道破裂維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面

(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);

(2)若這個輸水管道有水部分的水面寬AB=8 cm,水面最深地方的高度為2 cm,求這個圓形截面的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關于二次函數(shù)的圖象與性質,下列結論錯誤的是( )

A.x=-2時,函數(shù)有最大值-3

B.x<-2時,yx的增大而增大

C.拋物線可由經(jīng)過平移得到

D.該函數(shù)的圖象與x軸有兩個交點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側壁上各有一盞距離水面4m的景觀燈,求兩盞景觀燈之間的水平距離(提示:請建立平面直角坐標系后,再作答).

查看答案和解析>>

同步練習冊答案