【題目】先閱讀下列解答過程,然后再解題.
例:已知多項式2x3﹣x2+m有一個因式是2x+1,求m的值.
解法一:設2x3﹣x2+m=(2x+1)(x 2+ax+b),
則2x 3﹣x2+m=2x 3+(2a+1)x2+(a+2b)x+b.
比較系數(shù)得,解得,∴m=.
解法二:設2x3﹣x2+m=A(2x+1)(A為整式)
由于上式為恒等式,為方便計算了取x=﹣,2×(﹣)3﹣(﹣)2+m=0,故m=.
(1)已知多項式2x3﹣2x2+ m有一個因式是x+2,求m的值.
(2)已知x 4+ m x3+ n x﹣16有因式(x﹣1)和(x﹣2),求m、n的值.
【答案】(1)m=24;(2)m=﹣5,n=20.
【解析】
(1)設2x3﹣2x2+m=A(x+2)(A為整式),由于是恒等式,則取x=-2,代入即可解答;
(2)設x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A為整式),由于是恒等式,則取x=1和x=2,代入即可解答.
解:(1)∵多項式2x3﹣2x2+m有一個因式是x+2,
∴設2x3﹣2x2+m=A(x+2)(A為整式)
由于上式為恒等式,為方便計算取x=﹣2,
2×(﹣2)3﹣2×(﹣2)2+m=0,故m=24;
(2)∵x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),
∴設x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A為整式)
由于上式為恒等式,為方便計算取x=2和x=1,
代入得:24+m×23+2n﹣16=0,14+m×13+n﹣16=0,
解得:m=﹣5,n=20.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,D是線段BC的延長線上一點,以AD為一邊在AD的右側作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.
(1)如圖1,點D在線段BC的延長線上移動,若∠BAC=30°,則∠DCE= .
(2)設∠BAC=α,∠DCE=β:
①如圖1,當點D在線段BC的延長線上移動時,α與β之間有什么數(shù)量關系?請說明理由;
②當點D在直線BC上(不與B、C重合)移動時,α與β之間有什么數(shù)量關系?請直接寫出你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),E是直線AB、CD內部一點,AB∥CD,連接EA、ED.
(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關系,并證明你的結論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關于 的一元二次方程 的兩個根,且OA>OB
(1)求cos∠ABC的值。
(2)若E為x軸上的點,且 ,求出點E的坐標,并判斷△AOE與△DAO是否相似?請說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC的三個項點的坐標分別為A (3. 3),B (-3, 0), C (0. -2).
(1)在下面的平面直角坐標系中分別描出A,B, C三點,并畫出△ABC;
(2)將(1)中的△ABC向上平移3個單位長度,向左中移2個單位長度,得到△在圖中畫出△,請分別寫出A1、B1、C1三點的坐標.
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一架方梯AB長25米,如圖所示,斜靠在一面上:
(1)若梯子底端離墻7米,這個梯子的頂端距地面有多高?
(2)在(1)的條件下,如果梯子的頂端下滑了4米,那么梯子的底端在水平方向滑動了幾米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格紙中,每個小方格都是邊長為1個單位的正方形,圖①、圖②、圖③均為頂點都在格點上的三角形(每個小方格的頂點叫格點),
(1)在圖1中,圖①經(jīng)過一次變換(填“平移”或“旋轉”或“軸對稱”)可以得到圖②;
(2)在圖1中,圖③是可以由圖②經(jīng)過一次旋轉變換得到的,其旋轉中心是點(填“A”或 “B”或“C”);
(3)在圖2中畫出圖①繞點A順時針旋轉90°后的圖④.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com