(2012•天水)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.
(1)求證:△ABE≌△CAD;
(2)求∠BFD的度數(shù).

【答案】分析:(1)根據(jù)等邊三角形的性質(zhì)可知∠BAC=∠C=60°,AB=CA,結(jié)合AE=CD,可證明△ABE≌△CAD(SAS);
(2)根據(jù)∠BFD=∠ABE+∠BAD,∠ABE=∠CAD,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.
解答:(1)證明:∵△ABC為等邊三角形,
∴∠BAC=∠C=60°,AB=CA,
即∠BAE=∠C=60°,
在△ABE和△CAD中,
,
∴△ABE≌△CAD(SAS).

(2)解:∵∠BFD=∠ABE+∠BAD,
又∵△ABE≌△CAD,
∴∠ABE=∠CAD.
∴∠BFD=∠CAD+∠BAD=∠BAC=60°.
點評:本題考查三角形全等的性質(zhì)和判定方法以及等邊三角形的性質(zhì).判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天水)如圖,等邊△ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60°,則CD的長為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天水)如圖,已知拋物線經(jīng)過A(4,0),B(1,0),C(0,-2)三點.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由.
(3)P是直線x=1右側(cè)的該拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A、P、M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天水)如圖,已知直線AB、CD相交于點O,∠1=80°,如果DE∥AB,那么∠D的度數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天水)如圖,四邊形ABCD內(nèi)接于⊙O,已知直徑AD=6,∠ABC=120°,∠ACB=45°,連接OB交AC于點E.
(1)求AC的長.
(2)求CE:EA的值.
(3)在CB的延長線上取一點P,使CB=
12
BP,求證:直線PA與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•天水)如圖所示的一張矩形紙片ABCD(AD>AB),將紙片折疊一次,使點A與C重合,再展開,折痕EF交AD邊于點E,交BC邊于點F,交AC于點O,分別連接AF和CE.
(1)求證:四邊形AFCE是菱形;
(2)過E點作AD的垂線EP交AC于點P,求證:2AE2=AC•AP;
(3)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長.

查看答案和解析>>

同步練習(xí)冊答案