(2006•臨沂)如圖:在平行四邊形ABCD中,AB≠BC,AE、CF分別為∠BAD、∠BCD的平分線,連接BD,分別交AE、CF于點G、H,則圖中的全等三角形共有( )

A.3對
B.4對
C.5對
D.6對
【答案】分析:此題不妨大膽一點,先把所有可能全等的三角形都找出來,再根據(jù)已知條件一個個分析全等的依據(jù),得出正確結(jié)論.
解答:解:先從平行四邊形的性質(zhì)入手,得到AD=CB,AB=CD,∠BAD=∠DCB,∠ABC=∠CDA,
再由角平分線的性質(zhì)得到∠BAE=∠DAE=∠DCF=∠BCF,
從而先得到:△ABD≌△CDB,△ABE≌△CDF,
進而得到△ABG≌△CDH,△ADG≌△CBH,△BGE≌△DHF.
所以全等三角形共5對,分別是:△ABD≌△CDB(SSS),△ABE≌△CDF(ASA),
△ABG≌△CDH(ASA),△ADG≌△CBH(ASA),△BGE≌△DHF(AAS).
故選C.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.此類題目做題時要由易到難慢慢找尋,做到不重不漏.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年廣東省梅州市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省巢湖市第七中學中考數(shù)學復習模擬試卷(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省江陵縣中考數(shù)學模擬訓練卷(一)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省深圳市中考數(shù)學全真模擬試卷(二)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案