【題目】某旅行社為吸引市民組團(tuán)去天水灣風(fēng)景區(qū)旅游,推出如下收費標(biāo)準(zhǔn):
如果人數(shù)不超過人,人均旅游費用為元;
如果人數(shù)超過人,每增加人,人均旅游費用降低元,但人均旅游費用不得低于元.
某單位共付給該旅行社旅游費用元,問:該單位這次共有多少員工去天水灣風(fēng)景區(qū)旅游?
【答案】該單位這次共有名員工去天水灣風(fēng)景區(qū)旅游.
【解析】
根據(jù)題意首先分析這次旅游人數(shù),因為付給該旅行社旅游費用27000元,當(dāng)旅游人數(shù)是25人時,1000×25=25000,低于27000,可得出實際人數(shù)超過了25人,再表示出每人應(yīng)交錢數(shù)1000-20(x-25),結(jié)合實際問題列出方程即可.
∵,
∴去的人一定超過人,
設(shè)該單位這次共有名員工去西湖風(fēng)景區(qū)旅游,
,
解之得:,,
當(dāng)時,人均費用為元.
當(dāng)時,人均費用為元,因為低于元,這種情況舍去.
所以.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】這是某單位的平面示意圖,已知大門的坐標(biāo)為(-3,0),花壇的坐標(biāo)為(0,-1).
(1)根據(jù)上述條件建立平面直角坐標(biāo)系;
(2)建筑物A的坐標(biāo)為(3,1),請在圖中標(biāo)出A點的位置.
(3)建筑物B在大門北偏東45°的方向,并且B在花壇的正北方向處,請直接寫出B點的坐標(biāo).
(4)在y軸上找一點C,使△ABC是以AB腰的等腰三角形,請直接寫出點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】
如圖①,已知△ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將△BCE繞點C順時針旋轉(zhuǎn)60°至△ACF連接EF
試證明:AB=DB+AF
【類比探究】
(1)如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關(guān)系?請說明理由
(2)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎(chǔ)上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關(guān)系,不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=x+b交y軸于點A(0,4),交x軸于點B.
(1)求點B的坐標(biāo);
(2)直線l垂直平分OB交AB于點D,交x軸于點E,點P是直線l上一動點,且在點D的上方,設(shè)點P的縱坐標(biāo)為n.
①用含n的代數(shù)式表示△ABP的面積;
②當(dāng)S△ABP=8時,求點P的坐標(biāo);
(3)在(2)中②的條件下,以PB為斜邊作等腰直角△PBC,求點C的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線y=﹣x+3與x軸、y軸交于點A,點B,點O關(guān)于直線AB的對稱點為點O′,且點O′恰好在反比例函數(shù)y=的圖象上.
(1)求點A與B的坐標(biāo);
(2)求k的值;
(3)若y軸正半軸有點P,過點P作x軸的平行線,且與反比例函數(shù)y=的圖象交于點Q,設(shè)A、P、Q、O′四個點所圍成的四邊形的面積為S.若S=S△OAB時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,AC的垂直平分線MN交AB于D,交AC于E.
(1)若∠A=40°,求∠BCD的度數(shù);
(2)若AE=5,△BCD的周長17,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(0,4),點B的坐標(biāo)為(3,0),
(1)在圖中作出線段AB以二四象限的角平分線為對稱軸的對稱線段CD,并直接寫出四邊形ABDC的面積為 ;
(2)若點C為格點(橫縱坐標(biāo)均為整數(shù)),且AB⊥OC,且AB=OC,作出線段OC;并寫出C點坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com