【題目】如圖①,點(diǎn)A表示小明家,點(diǎn)B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時(shí)發(fā)現(xiàn)數(shù)學(xué)書沒帶,于是媽媽立即騎車原路回家拿書后再追趕小明,同時(shí)小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽.假設(shè)拿書時(shí)間忽略不計(jì),小明和媽媽在整個(gè)運(yùn)動(dòng)過程中分別保持勻速.媽媽從C處出發(fā)x分鐘時(shí)離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1與x的函數(shù)圖像;折線O-G-F表示y2與x的函數(shù)圖像.
(1)小明的速度為_________m/min,圖②中a的值為__________.
(2)設(shè)媽媽從C處出發(fā)x分鐘時(shí)媽媽與小明之間的距離為y米.
①寫出小明媽媽在騎車由C處返回到A處的過程中,y與x的函數(shù)表達(dá)式及x的取值范圍;
②在圖③中畫出整個(gè)過程中y與x的函數(shù)圖像.(要求標(biāo)出關(guān)鍵點(diǎn)的坐標(biāo))
【答案】 60 33
【解析】試題分析:
(1)由圖可知,①C處距離學(xué)校1800米,小明從C處到學(xué)校用時(shí)30分鐘,由此即可求得小明的速度為1800÷30=60(米/分鐘);②C處距離小明家2400米,小明媽媽從C處到家再到C處用時(shí)24分鐘,由此可得小明媽媽的速度為2400×2÷24=200(米/分鐘),由此可得a=(2400×2+1800)÷200=33(分鐘);
(2)①由(1)可知小明媽媽的速度為200米/分鐘,小明的速度為60米/分鐘可得y=260x();②由題意可知,y與x的函數(shù)關(guān)系分為三段:第一段,第二段,第三段,結(jié)合題中已知條件可得當(dāng)時(shí),y=0;當(dāng)x=12時(shí),y=3120;當(dāng)x=30時(shí),y=600;當(dāng)x=33時(shí),y=0;由此即可畫出整個(gè)過程中y與x的函數(shù)圖象了.
試題解析:
(1)①由圖1和圖2中的信息可知:C處距離學(xué)校1800米,小明由C處到學(xué)校用了30分鐘,
∴小明的速度=1800÷30=60(米/分鐘);
②由圖1和圖2中的信息可知: C處距離小明家2400米,小明媽媽從C處到家再到C處用時(shí)24分鐘,
∴小明媽媽的速度為2400×2÷24=200(米/分鐘),
∵C處距離學(xué)校1800米,
∴a=(2400×2+1800)÷200=33(分鐘);
(2)①由(1)可知小明媽媽的速度是:200 米/分鐘,小明的速度是60米/分鐘,
∵小明媽媽在騎車由C回到A的過程中,小明與媽媽背向而行,
∴y=260x, x的取值范圍是0≤x≤12.
②由題意可得,整個(gè)過程中,y與x的函數(shù)圖象如下圖所示:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有多少人?
(2)在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為多少?
(3)如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有多少人喜歡籃球項(xiàng)目?
(4)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(5)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)運(yùn)用列表或樹狀圖求出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:將一把三角尺放在如圖①的正方形中,使它的直角頂點(diǎn)在對(duì)角線上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn),另一邊與射線相交于點(diǎn),探究:
(1)如圖②,當(dāng)點(diǎn)在上時(shí),求證:.
(2)如圖③,當(dāng)點(diǎn)在延長線上時(shí),①中的結(jié)論還成立嗎?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識(shí))數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn)A、點(diǎn)B表示的數(shù)分別為a、b,則A、B兩點(diǎn)之間的距離AB=,線段AB的中點(diǎn)表示的數(shù)為.
(問題情境)如圖1,已知數(shù)軸上有三點(diǎn)A、B、C,AB=60,點(diǎn)A對(duì)應(yīng)的數(shù)是40.
(綜合運(yùn)用)(1)點(diǎn)B表示的數(shù)是__________.
(2)若BC:AC=4:7,求點(diǎn)C到原點(diǎn)的距離.
(3)如圖2,在(2)的條件下,動(dòng)點(diǎn)P、Q兩點(diǎn)同時(shí)從C、A出發(fā)向右運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)R從點(diǎn)A向左運(yùn)動(dòng),已知點(diǎn)P的速度是點(diǎn)R的速度的3倍,點(diǎn)Q的速度是點(diǎn)R的速度2倍少5個(gè)單位長度/秒.經(jīng)過5秒,點(diǎn)P、Q之間的距離與點(diǎn)Q、R之間的距離相等,求動(dòng)點(diǎn)Q的速度;
(4)如圖3,在(2)的條件下,O表示原點(diǎn),動(dòng)點(diǎn)P、T分別從C、O兩點(diǎn)同時(shí)出發(fā)向左運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)R從點(diǎn)A出發(fā)向右運(yùn)動(dòng),點(diǎn)P、T、R的速度分別為5個(gè)單位長度/秒,1個(gè)單位長度/秒、2個(gè)單位長度/秒,在運(yùn)動(dòng)過程中,如果點(diǎn)M為線段PT的中點(diǎn),點(diǎn)N為線段OR的中點(diǎn).請(qǐng)問PT-MN的值是否會(huì)發(fā)生變化?若不變,請(qǐng)求出相應(yīng)的數(shù)值;若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在建筑物AB上,掛著35 m長的宣傳條幅AE,從另一建筑物CD的頂部D處看條幅頂端A處,仰角為45°,看條幅底端E處,俯角為37°.求兩建筑物間的距離BC.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8, tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),,將線段沿著軸向右平移至,使點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),連接.
(1)若,滿足.
①填空:_______,_______;
②若面積關(guān)系成立,則點(diǎn)的坐標(biāo)為_______;
(2)平分,平分,,相交于點(diǎn),判斷的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)的圖像交于點(diǎn)A.
(1)求點(diǎn)A的坐標(biāo);
(2)設(shè)x軸上一點(diǎn)P(a,b),過點(diǎn)P作x軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交和的圖像于點(diǎn)B、C,連接OC,若BC=OA,求△OBC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,F是AB上一點(diǎn),H是BC延長線上一點(diǎn),連接FH,將△FBH沿FH翻折,使點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在AD上,EH與CD交于點(diǎn)G,連接BG交FH于點(diǎn)M,當(dāng)GB平分∠CGE時(shí),BM=2,AE=8,則ED=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)踐與探究
寬與長的比是(約0.618)的矩形叫做黃金矩形。黃金矩形給我們以協(xié)調(diào)、均勻的美感。世界各國許多著名的建筑,為取得最佳的視覺效果,都采用了黃金矩形的設(shè)計(jì)。
下面我們通過折紙得到黃金矩形。
第一步,在一張矩形紙片的一端,利用圖1的方法折出一個(gè)正方形,然后把紙片展平。
第二步,如圖2,把這個(gè)正方形折成兩個(gè)相等的矩形,再把紙片展平,折痕是。
第三步,折出內(nèi)側(cè)矩形的對(duì)角線,并把折到圖3中所示的處,折痕為。
第四步,展平紙片,按照所得的點(diǎn)折出,使;過點(diǎn)折出折痕,使。
(1)上述第三步將折到處后,得到一個(gè)四邊形,請(qǐng)判斷四邊形的形狀,并說明理由。
(2)上述第四步折出折痕后得到一個(gè)四邊形,這個(gè)四邊形是黃金矩形,請(qǐng)你說明理由。(提示:設(shè)的長度為2)
(3)在圖4中,再找出一個(gè)黃金矩形_______________________________(黃金矩形除外,直接寫出答案,不需證明,可能參考數(shù)值:)
(4)請(qǐng)你舉一個(gè)采用了黃金矩形設(shè)計(jì)的世界名建筑_________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com