精英家教網 > 初中數學 > 題目詳情

【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側,DEAB,垂足為E,DE的延長線交此圓于點F.BGAD,垂足為G,BGDE于點H,DC,FB的延長線交于點P,且PC=PB.

(1)求證:BGCD;

(2)設△ABC外接圓的圓心為O,若AB=DH,OHD=80°,求∠BDE的大小.

【答案】(1)證明見解析;(2)20°或40°.

【解析】

(1)根據等邊對等角得:∠PCB=∠PBC,由四點共圓的性質得:∠BAD+∠BCD=180°,從而得:∠BFD=∠PCB=∠PBC,根據平行線的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直徑,從而得:∠ADC=∠AGB=90°,根據同位角相等可得結論;

(2)先證明四邊形BCDH是平行四邊形,得BC=DH,根據特殊的三角函數值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分兩種情況:

①當點ODE的左側時,如圖2,作輔助線,構建直角三角形,由同弧所對的圓周角相等和互余的性質得:∠AMD=∠ABD,則∠ADM=∠BDE,并由DH=OD,可得結論;

②當點ODE的右側時,如圖3,同理作輔助線,同理有∠ADE=∠BDN=20°,∠ODH=20°,得結論.

(1)證明:如圖1,

PC=PB,

∴∠PCB=PBC,

∵四邊形ABCD內接于圓,

∴∠BAD+BCD=180°,

∵∠BCD+PCB=180°,

∴∠BAD=PCB,

∵∠BAD=BFD,

∴∠BFD=PCB=PBC,

BCDF,

DEAB,

∴∠DEB=90°,

∴∠ABC=90°,

AC是⊙O的直徑,

∴∠ADC=90°,

BGAD,

∴∠AGB=90°,

∴∠ADC=AGB,

BGCD;

(2)由(1)得:BCDF,BGCD,

∴四邊形BCDH是平行四邊形,

BC=DH,

RtABC中,∵AB=DH,

tanACB=,

∴∠ACB=60°,BAC=30°,

∴∠ADB=60°,BC=AC,

DH=AC,

①當點ODE的左側時,如圖2,作直徑DM,連接AM、OH,則∠DAM=90°,

∴∠AMD+ADM=90°

DEAB,

∴∠BED=90°,

∴∠BDE+ABD=90°,

∵∠AMD=ABD,

∴∠ADM=BDE,

DH=AC,

DH=OD,

∴∠DOH=OHD=80°,

∴∠ODH=20°

∵∠AOB=60°,

∴∠ADM+BDE=40°,

∴∠BDE=ADM=20°,

②當點ODE的右側時,如圖3,作直徑DN,連接BN,

由①得:∠ADE=BDN=20°,ODH=20°,

∴∠BDE=BDN+ODH=40°,

綜上所述,∠BDE的度數為20°40°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當的降價措施,經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應降價多少元?請完成下列問題:

(1)未降價之前,某商場襯衫的總盈利為    元.

(2)降價后,設某商場每件襯衫應降價x元,則每件襯衫盈利   元,平均每天可售出   件(用含x的代數式進行表示)

(3)請列出方程,求出x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC+D=180°,AC平分∠BADCEAB,CFAD.試說明:

1CBE≌△CDF;

2AB+DF=AF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知矩形ABCD中,EAD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.

(1)求證:BGF≌△FHC;

(2)設AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點A按逆時針方向旋轉90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點D.

(1)求∠BDF的大小;

(2)求CG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列說法正確的是(

A. 一定是一次函數

B. 有的實數在數軸上找不到對應的點

C. 長為的三條線段能組成直角三角形

D. 無論為何值,點總是在第二象限

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將長為、寬為的長方形白紙,按如圖所示的方法黏合起來,黏合部分寬為.

1)根據上圖,將表格補充完整:

白紙張數

1

2

3

4

10

紙條長度

40

75

110

2)設張白紙黏合后的總長度為,則之間的關系式是

3)你認為白紙黏合起來總長度可能為嗎?為什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線軸交于、兩點,直線軸交于點,與軸交于點.點是拋物線上一動點,過點作直線軸于點,交直線于點.設點的橫坐標為

求拋物線的解析式;

若點軸上方的拋物線上,當時,求點的坐標;

若點是點關于直線的對稱點,當點落在軸上時,請直接寫出的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將ABO繞點B順時針旋轉到A1BO1的位置,使點A的對應點A1落在直線y=x上,再將A1BO1繞點A1順時針旋轉到A1B1O2的位置,使點O1的對應點O2落在直線y=x上,依次進行下去,若點A的坐標是(0,1),則點A8的橫坐標是_____

查看答案和解析>>

同步練習冊答案