【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側,DE⊥AB,垂足為E,DE的延長線交此圓于點F.BG⊥AD,垂足為G,BG交DE于點H,DC,FB的延長線交于點P,且PC=PB.
(1)求證:BG∥CD;
(2)設△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大小.
【答案】(1)證明見解析;(2)20°或40°.
【解析】
(1)根據等邊對等角得:∠PCB=∠PBC,由四點共圓的性質得:∠BAD+∠BCD=180°,從而得:∠BFD=∠PCB=∠PBC,根據平行線的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直徑,從而得:∠ADC=∠AGB=90°,根據同位角相等可得結論;
(2)先證明四邊形BCDH是平行四邊形,得BC=DH,根據特殊的三角函數值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分兩種情況:
①當點O在DE的左側時,如圖2,作輔助線,構建直角三角形,由同弧所對的圓周角相等和互余的性質得:∠AMD=∠ABD,則∠ADM=∠BDE,并由DH=OD,可得結論;
②當點O在DE的右側時,如圖3,同理作輔助線,同理有∠ADE=∠BDN=20°,∠ODH=20°,得結論.
(1)證明:如圖1,
∵PC=PB,
∴∠PCB=∠PBC,
∵四邊形ABCD內接于圓,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直徑,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四邊形BCDH是平行四邊形,
∴BC=DH,
在Rt△ABC中,∵AB=DH,
∴tan∠ACB=,
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,BC=AC,
∴DH=AC,
①當點O在DE的左側時,如圖2,作直徑DM,連接AM、OH,則∠DAM=90°,
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵DH=AC,
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠AOB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②當點O在DE的右側時,如圖3,作直徑DN,連接BN,
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
綜上所述,∠BDE的度數為20°或40°.
科目:初中數學 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴大銷售、增加盈利盡快減少庫存,商場決定采取適當的降價措施,經調查發(fā)現,如果每件襯衫每降價1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應降價多少元?請完成下列問題:
(1)未降價之前,某商場襯衫的總盈利為 元.
(2)降價后,設某商場每件襯衫應降價x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數式進行表示)
(3)請列出方程,求出x的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.
(1)求證:△BGF≌△FHC;
(2)設AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點A按逆時針方向旋轉90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點D.
(1)求∠BDF的大小;
(2)求CG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 一定是一次函數
B. 有的實數在數軸上找不到對應的點
C. 長為的三條線段能組成直角三角形
D. 無論為何值,點總是在第二象限
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將長為、寬為的長方形白紙,按如圖所示的方法黏合起來,黏合部分寬為.
(1)根據上圖,將表格補充完整:
白紙張數 | 1 | 2 | 3 | 4 | … | 10 | … |
紙條長度 | 40 | 75 | 110 | … | … |
(2)設張白紙黏合后的總長度為,則與之間的關系式是 ;
(3)你認為白紙黏合起來總長度可能為嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點,直線與軸交于點,與軸交于點.點是拋物線上一動點,過點作直線軸于點,交直線于點.設點的橫坐標為.
求拋物線的解析式;
若點在軸上方的拋物線上,當時,求點的坐標;
若點’是點關于直線的對稱點,當點’落在軸上時,請直接寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將△ABO繞點B順時針旋轉到△A1BO1的位置,使點A的對應點A1落在直線y=x上,再將△A1BO1繞點A1順時針旋轉到△A1B1O2的位置,使點O1的對應點O2落在直線y=x上,依次進行下去…,若點A的坐標是(0,1),則點A8的橫坐標是_____
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com