【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè).

(1)若先從袋中取出xx>0)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將摸出黑球記為事件A,若A為必然事件,則x的值為   ;

(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用畫樹狀圖或列表法求這個(gè)事件的概率.

【答案】(1)3;(2)

【解析】

(1)由在一個(gè)不透明的袋子中裝有僅顏色不同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè),根據(jù)必然事件的定義即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè)的情況,再利用概率公式即可求得答案.

1)摸出黑球為必然事件,

x=3,

故答案為:3;

(2)3個(gè)紅球記為A1,A2,A3,2個(gè)黑球記為B1,B2

畫樹狀圖得:

∵共有20種等可能的結(jié)果,從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè)的有12種情況,

∴從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè)的概率為=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果M個(gè)不同的正整數(shù),對其中的任意兩個(gè)數(shù),這兩個(gè)數(shù)的積能被這兩個(gè)數(shù)的和整除,則稱這組數(shù)為M個(gè)數(shù)的自然數(shù)組,如(3,6)為兩個(gè)數(shù)的自然數(shù)組,因?yàn)椋?/span>3×6)能被(3+6)整除;又如(15,30,60)為三個(gè)數(shù)的自然數(shù)組,因?yàn)椋?/span>15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…

(1)求證:2nnn﹣2)(n≥3,n為整數(shù))組成的數(shù)組是兩個(gè)數(shù)的自然數(shù)組;

(2)若(4a,5a,6a)是三個(gè)數(shù)的自然數(shù)組,求滿足條件的三位正整數(shù)a,并判斷(4a+5,5a+5,6a+5)是否為自然數(shù)組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示.(每個(gè)小方格都是邊長為1個(gè)單位長度的正方形)

(1)畫出△ABC關(guān)于原點(diǎn)對稱的△A'B'C';

(2)將△A'B'C'繞點(diǎn)C'順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△ABC″,并直接寫出此過程中線段C'A'掃過圖形的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,ACB=90°,AC=BC,D是AB上的一個(gè)動點(diǎn)(不與點(diǎn)A,B重合),連接CD,將CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CE,連接DE,DE與AC相交于點(diǎn)F,連接AE.下列結(jié)論:①△ACE≌△BCD;②BCD=25°,則∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,則AF=.其中正確的結(jié)論是______.(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過A,C兩點(diǎn),連接BC.

(1)求直線l的解析式;

(2)若直線x=m(m0)與該拋物線在第三象限內(nèi)交于點(diǎn)E,與直線l交于點(diǎn)D,連接OD.當(dāng)ODAC時(shí),求線段DE的長;

(3)取點(diǎn)G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點(diǎn)P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線PQ同側(cè)有兩點(diǎn)M,N,點(diǎn)T在直線PQ上,若∠MTPNTQ,則稱點(diǎn)TM,N在直線PQ上的投射點(diǎn).

(1)如圖②,在RtABC中,∠B=60°,D為斜邊AB的中點(diǎn),EAC的中點(diǎn).求證:點(diǎn)DC,E在直線AB上的投射點(diǎn);

(2)如圖③,在正方形網(wǎng)格中,已知點(diǎn)AB,C三點(diǎn)均在格點(diǎn)上,請僅用沒有刻度的直尺在AC上畫出點(diǎn)P,在BC上畫出點(diǎn)Q,使A,PBC上的投射點(diǎn)Q滿足CQ=2BQ;

(3)如圖④,在RtABC中,∠C=90°,ACBC,在AB,BC邊上是否分別存在點(diǎn)DE,使點(diǎn)DE,CAB上的投射點(diǎn),點(diǎn)EADBC上的投射點(diǎn)?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線交于點(diǎn)O,點(diǎn)E、F分別在AB、BC上(AEBE),且EOF=90°,OE、DA的延長線交于點(diǎn)M,OF、AB的延長線交于點(diǎn)N,連接MN.

(1)求證:OM=ON.

(2)若正方形ABCD的邊長為4,E為OM的中點(diǎn),求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若反比例函數(shù)y與一次函數(shù)y2x4的圖象都經(jīng)過點(diǎn)A(a2)

(1)求反比例函數(shù)y的表達(dá)式;

(2)當(dāng)反比例函數(shù)y的值大于一次函數(shù)y2x4的值時(shí),求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,二次函數(shù)y=x2﹣2x﹣3的部分圖象與x軸交于點(diǎn)A、

B(AB的左邊),與y軸交于點(diǎn)C,連接BC,D為頂點(diǎn).

(1)求∠OBC的度數(shù);

(2)在x軸下方的拋物線上是否存在一點(diǎn)Q,使ABQ的面積等于5?如存在,求Q點(diǎn)的坐標(biāo),如不存在,說明理由;

(3)點(diǎn)P是第四象限的拋物線上的一個(gè)動點(diǎn)(不與點(diǎn)D重合),過點(diǎn)PPF⊥x軸交BC于點(diǎn)F,求線段PF長度的最大值.

查看答案和解析>>

同步練習(xí)冊答案