【題目】如圖,在平行四邊形ABCD中,對角線AC,BD交于點(diǎn)O,OA,OD滿足等式+(OA-5)2=0,AD=13.
(1)求證:平行四邊形ABCD是菱形;
(2)過點(diǎn)D作DE∥AC交BC的延長線于點(diǎn)E,DF平分∠BDE,請求出DF的長度.
【答案】(1)見解析;(2)DF=.
【解析】
(1)根據(jù)非負(fù)性得出OA=5,OD=12,利用勾股定理的逆定理得出AC⊥BD,利用菱形的判定解答;
(2)作輔助線,構(gòu)建等腰直角三角形,則△FDG為等腰直角三角形,設(shè)FG=x,則BG=24-x,證明△BOC∽△BGF,可得x的值,從而得DF的長.
(1)∵+(OA-5)2=0,
∴OA=5,OD=12,
∴OA2+OD2=52+122=169,
∵AD=13,
∴AD2=169,
∴OA2+OD2=AD2,
∴∠AOD=90°,
∴AC⊥BD,
∴平行四邊形ABCD是菱形;
(2)過F作FG⊥BD于G,
∵DE∥AC,AC⊥BD,
∴BD⊥DE,即∠BDE=90°,
∵DF平分∠BDE,
∴∠BDF=45°,
∴△FDG為等腰直角三角形,
∴DG=FG,
設(shè)FG=x,則BG=24-x,
∵OC∥FG,
∴△BOC∽△BGF,
∴,
∴,x=,
∴DF=FG=x=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=(2m+1)x+m﹣3
(1)若函數(shù)圖象經(jīng)過原點(diǎn),求m的值;
(2)若函數(shù)圖象與y軸的交點(diǎn)坐標(biāo)為(0,﹣2),求m的值;
(3)若y隨著x的增大而增大,求m的取值范圖;
(4)若函數(shù)圖象經(jīng)過第一、三,四象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是兩種長方形鋁合金窗框,已知窗框的長都是y米,窗框的寬都是x米,若一用戶需(1)型的窗框2個(gè),(2)型的窗框2個(gè).
(1)用含x、y的式子表示共需鋁合金的長度;
(2)若1m鋁合金的平均費(fèi)用為100元,求當(dāng)x=1.2,y=1.5時(shí),鋁合金的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),平面直角坐標(biāo)系中,點(diǎn)A、B分別在x、y軸上,點(diǎn)B的坐標(biāo)為(0,1),∠BAO=30°.
(1)求AB的長度;
(2)以AB為一邊作等邊△ABE,作OA的垂直平分線MN交AB的垂線AD于點(diǎn),求證:BD=OE;
(3)在(2)的條件下,連接DE交AB于F,求證:F為DE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,將線段先向上平移個(gè)單位長度,再向右平移個(gè)單位長度,得到線段,連接,,構(gòu)成平行四邊形.
(1)請寫出點(diǎn)的坐標(biāo)為________,點(diǎn)的坐標(biāo)為________,________;
(2)點(diǎn)在軸上,且,求出點(diǎn)的坐標(biāo);
(3)如圖,點(diǎn)是線段上任意一個(gè)點(diǎn)(不與、重合),連接、,試探索、、之間的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C是y軸上一點(diǎn)將坐標(biāo)平面沿直線AC折疊,使點(diǎn)B剛好落在x負(fù)半軸上,則點(diǎn)C的坐標(biāo)為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的道路上相向而行,甲騎自行車從地到地,乙駕車從地到地,假設(shè)他們分別以不同的速度勻速行駛,甲先出6分鐘后,乙才出發(fā),乙的速度為千米/分,在整個(gè)過程中,甲、乙兩人之間的距離(千米)與甲出發(fā)的時(shí)間(分)之間的部分函數(shù)圖象如圖.
(1)兩地相距______千米,甲的速度為______千米/分;
(2)直接寫出點(diǎn)的坐標(biāo)______,求線段所表示的與之間的函數(shù)表達(dá)式;
(3)當(dāng)乙到達(dá)終點(diǎn)時(shí),甲還需______分鐘到達(dá)終點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F在BD上,且BF=DE.
(1)寫出圖中所有你認(rèn)為全等的三角形;
(2)延長AE交BC的延長線于G,延長CF交DA的延長線于H(請補(bǔ)全圖形),證明四邊形AGCH是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,反比例函數(shù)y=(x>0),過點(diǎn)A(3,4).
(1)求y關(guān)于x的函數(shù)表達(dá)式.
(2)求當(dāng)y≥2時(shí),自變量x的取值范圍.
(3)在x軸上有一點(diǎn)P(1,0),在反比例函數(shù)圖象上有一個(gè)動點(diǎn)Q,以PQ為一邊作一個(gè)正方形PQRS,當(dāng)正方形PQRS有兩個(gè)頂點(diǎn)在坐標(biāo)軸上時(shí),畫出狀態(tài)圖并求出相應(yīng)S點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com