【題目】已知如圖,直線(xiàn)AB、CD相交于點(diǎn)O,∠COE=90°,若∠BOD:∠BOC=1:5.

(1)求∠AOC的度數(shù);

(2)如圖,過(guò)點(diǎn)O作OF⊥AB,求∠DOF與∠EOF的度數(shù).

【答案】(1) ∠AOC=30°; (2)∠DOF=60°,∠EOF=150°.

【解析】

(1)根據(jù)平角的定義可求∠BOD,根據(jù)對(duì)頂角的定義可求∠AOC的度數(shù);(2)根據(jù)平角的定義可求∠EOD,根據(jù)垂直的定義可求∠DOF的度數(shù),進(jìn)而求出∠EOF的度數(shù).

(1)∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°

∴∠BOD°=30°,

∵∠BOD與∠AOC是對(duì)頂角

∴∠AOC=∠BOD=30°;

(2)∠EOD=180°-∠EOC=90°

∵OF⊥AB

∴∠BOF =90°,

∴∠DOF=∠BOF-∠BOD=90°-30°=60°

∴∠EOF=∠EOD+∠DOF=90°+60°=150°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,三角形的三條中線(xiàn)一定會(huì)交于一點(diǎn),這一點(diǎn)就叫做三角形的重心.重心有很多美妙的性質(zhì),如關(guān)于線(xiàn)段比.面積比就有一些“漂亮”結(jié)論,利用這些性質(zhì)可以解決三角形中的若干問(wèn)題.請(qǐng)你利用重心的概念完成如下問(wèn)題:

(1)若O是△ABC的重心(如圖1),連結(jié)AO并延長(zhǎng)交BC于D,證明:
(2)若AD是△ABC的一條中線(xiàn)(如圖2),O是AD上一點(diǎn),且滿(mǎn)足 ,試判斷O是△ABC的重心嗎?如果是,請(qǐng)證明;如果不是,請(qǐng)說(shuō)明理由;
(3)若O是△ABC的重心,過(guò)O的一條直線(xiàn)分別與AB、AC相交于G、H(均不與△ABC的頂點(diǎn)重合)(如圖3),S四邊形BCHG , SAGH分別表示四邊形BCHG和△AGH的面積,試探究 的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算(2017﹣π)0﹣( 1+|﹣2|
(2)化簡(jiǎn)(1﹣ )÷( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC和△DEF中,滿(mǎn)足AB=DE,∠B=∠E,如果要判定這兩個(gè)三角形全等,那么添加的條件不正確的是( )

A. ∠A=∠D B. ∠C=∠F C. BC=EF D. AC=DF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角△ABC,DE分別是AB,AC邊上的點(diǎn),△ADC≌△ADC',△AEB≌△AEB',C'DEB'∥BC,BE,CD交于點(diǎn)F,若∠BACx°,則∠BFC的大小是_____°.(用含x的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的5個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選取最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,

解答下列問(wèn)題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;并寫(xiě)出這次主題班會(huì)調(diào)查結(jié)果的眾數(shù)是;中位數(shù)落在的區(qū)域是
(3)若該校學(xué)生人數(shù)為800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中“感恩”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線(xiàn),DE⊥ABE,F(xiàn)AC上,BD=DF;

證明:(1)CF=EB.

(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCDx軸,BCDEy軸,且AB=CD=4 cm,OA=5 cm,DE=2 cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1 cm的速度,沿ABC路線(xiàn)向點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2 cm的速度,沿OED路線(xiàn)向點(diǎn)D運(yùn)動(dòng).若P,Q兩點(diǎn)同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),運(yùn)動(dòng)停止.

(1)直接寫(xiě)出B,C,D三個(gè)點(diǎn)的坐標(biāo);

(2)當(dāng)P,Q兩點(diǎn)出發(fā)3 s時(shí),求三角形PQC的面積;

(3)設(shè)兩點(diǎn)運(yùn)動(dòng)的時(shí)間為t s,用含t的式子表示運(yùn)動(dòng)過(guò)程中三角形OPQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,梯形ABCD中,ADBC,ABC=90°,AB=3,BC=10,AD=5,MBC邊上的任意一點(diǎn),聯(lián)結(jié)DM,聯(lián)結(jié)AM

(1)若AM平分∠BMD,求BM的長(zhǎng);

(2)過(guò)點(diǎn)AAEDM,交DM所在直線(xiàn)于點(diǎn)E

①設(shè)BM=x,AE=yy關(guān)于x的函數(shù)關(guān)系式;

②聯(lián)結(jié)BE,當(dāng)ABE是以AE為腰的等腰三角形時(shí),請(qǐng)直接寫(xiě)出BM的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案